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ABSTRACT: Li-rich layered oxides have attracted intense
attention for lithium-ion batteries, as provide substantial
capacity from transition metal cation redox simultaneous with
reversible oxygen-anion redox. However, unregulated irrever-
sible oxygen-anion redox leads to critical issues such as voltage
fade and oxygen release. Here, we report a feasible NiFe2O4
(NFO) surface-coating strategy to turn the nonbonding
coordination of surface oxygen into metal−oxygen decoordina-
tion. In particular, the surface simplex M−O (M = Ni, Co, Mn
from MO6 octahedra) and N−O (N = Ni, Fe from NO6
octahedra) bonds are reconstructed in the form of M−O−N bonds. By applying both in operando and ex situ technologies,
we found this heterostructural interface traps surface lattice oxygen, as well as restrains cation migration in Li-rich layered
oxide during electrochemical cycling. Therefore, surface lattice oxygen behavior is significantly sustained. More interestingly,
we directly observe the surface oxygen redox decouple with cation migration. In addition, the NFO-coating blocks HF
produced from electrolyte decomposition, resulting in reducing the dissolution of Mn. With this strategy, higher cycle stability
(91.8% at 1 C after 200 cycles) and higher rate capability (109.4 mA g−1 at 1 C) were achieved in this work, compared with
pristine Li-rich layered oxide. Our work offers potential for designing electrode materials utilizing oxygen redox chemistry.
KEYWORDS: Li-rich layered oxide, lithium-ion batteries, oxygen redox, surface coating, voltage fade

Nowadays, lithium-ion batteries have become one of
the most successful commercial power sources for
portable devices and electric vehicles (EVs).1−3

Despite their energy density approaching 300 Wh kg−1, such
a performance is still unable to meet the growing demands for
an increased driving range.4 Li-rich layered oxides, such as
Li1+xM1−xO2 (1 < x ≤ 1/3, M = Ni, Co, Mn), have attracted
much attention as they hold the highest energy densities than
conventional cathode materials.5,6 However, these cathode
materials suffer from large first-cycle irreversible capacity loss,
and voltage/capacity fade during cycling, which seriously limit
their practical implementation.7 These shortcomings are
believed to be linked with irreversible anionic redox in the
form of O2 release, which originates from lattice oxygen.8−11

Nevertheless, previous theoretical and experimental results
prove that lattice oxygen in the bulk can experience reversible
redox and hence achieve extra reversible capacity.12−14

Therefore, it is essential to understand the evolution of lattice
oxygen in the surface.
Until now, tremendous efforts, including lattice doping,15−18

surface modification,19 and particle design,9,20,21 have been
applied to stabilize oxygen redox. Since the irreversible O2
release and structure collapse initiate at the surface of

cathodes,22−24 surface modification should be effective in this
context. Various functional coatings have been applied to limit
unwanted oxygen activities and restrict structure degradation.
These coatings include metal oxides (Al2O3, TiO2, ZrO2),

25−27

metal fluorides (LiF, FeF3, AlF3),
28−30 phosphate (Li3PO4,

AlPO4),
31,32 etc. The above-reported strategies have shown

positive effects on suppressing O2 release and stabilizing the
crystal structure. Besides these coatings, fast lithium-ion
conductors (LiTaO3, Li−La−Ti−O, lithium phosphorus
oxynitride) were also developed to solve these issues.33−35

However, these fast lithium-ion conductors are costly for large-
scale applications. Therefore, it is of great importance to
developing lithium-ion conductors with cost competitiveness.
In the previous work, we have demonstrated a

La0.8Sr0.2MnO3−y layer with an R3̅c hexagonal structure
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symmetry being coated onto Li-rich layered oxide (the main
phase having hexagonal R3̅m symmetry), stabilized lattice
oxygen via a phase compatible interface.36 Considering
structural compatibility, spinel oxides are ideal coatings for
layered oxides owing to their cubic close-packed O arrays.37

Accordingly, intense research efforts have been made to
construct layered/spinel cathode materials to take advantage of
high capacity and fast kinetics from Li-rich layered oxides and
spinel, respectively.38−40 Although substantial improvements of
these lattice match strategies have been achieved, direct

observation of the evolution for surface oxygen and transition
metal during battery cycling is still missing.
Among the various oxides, the selected inverse spinel

NiFe2O4 stands out for its low cost (Figure S1). For instance,
moving from a LaSrMnO3 coating to a NiFe2O4 coating can
bring a cost decrease of 36.9%. In addition, NiFe2O4 with good
Li+-ionic conductivity has been developed as a promising
anode material for lithium-ion batteries.41−43 To date, there
are no reports of NiFe2O4 coating on lithium-rich layered
cathode materials. Here, we demonstrate a simple and low-cost
surface treatment to form a phase compatible NiFe2O4 layer on

Figure 1. Morphological and structural characterization of pristine LNCM and NFO3. Scanning electron microscopy (SEM), TEM, annular
bright-field scanning transmission electron microscopy images of (a−c) pristine LNCM and (d−f) NFO3, respectively. (g) Schematic
illustration of LNCM/NFO lateral heterointerface. (h) Schematic of M−O−N bonding. (i) XPS O 1s spectra of pristine LNCM and NFO-
coated LNCM samples. (j) XPS O 1s spectra of NFO3. (k) STEM-EDS mapping of NFO3.

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.1c02023
ACS Nano 2021, 15, 11607−11618

11608

https://pubs.acs.org/doi/suppl/10.1021/acsnano.1c02023/suppl_file/nn1c02023_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsnano.1c02023?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.1c02023?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.1c02023?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.1c02023?fig=fig1&ref=pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.1c02023?rel=cite-as&ref=PDF&jav=VoR


Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 (LNCM) cathode material via
the coprecipitation method. The effect of a NiFe2O4-coating
layer on the structure and electrochemical performance of
LNCM was investigated. By combining several in operando and
ex situ techniques, we direct capture surface oxygen redox
decouple with cation migration. We show that this M−O−N
bonding network not only suppresses O2 release but also
prevents structural degradation and Mn dissolution during
electrochemical processes.

RESULTS AND DISCUSSION

The pristine LNCM and NFO-coated LNCM with coatings of
1.0, 2.0, 3.0, and 4.0 wt % NFO (denoted as NFO1, NFO2,
NFO3, and NFO4, respectively) were synthesized as
mentioned in the Experimental Section. Figure S2 shows the
X-ray powder diffraction (XRD) patterns of LNCM before and
after NFO surface treatment. All samples show diffraction
peaks that can be indexed to a two-phase composite with
layered structures: a hexagonal unit cell (R3̅m, LiMO2) and a
monoclinic unit cell (C/2m, Li2MnO3).

6,44,45 The evident
splitting of (006)/(102) and (018)/(110) is observed,
suggesting the characteristic R3̅m layered structure.46 It was
reported that the intensity ratio of I(003)/I(104) usually
represents the level of Li/Ni cation mixing.6,47 The values of
I(003)/I(104) for LNCM, NFO1, NFO2, NFO3, and NFO4
are 1.61, 1.68, 1.74, 1.88, and 1.82, respectively. These values
are much larger than 1.2, which implies low level cation
mixing.15 The NFO3 shows the lowest Li/Ni mixing level
among them. The weak peaks in the 2θ region of 20 to 25° are
normally assigned to characteristic superlattice peaks owing to
Li and Mn cation short-range ordering in the transition metal
(TM) layer.48 In particular, the weak diffraction peak located
at 20.8° is assigned to the (020) plane of monoclinic Li2MnO3.
After NFO surface coating, there were no obvious peak shifts
in any of the samples, indicating this modification does not
change the bulk crystal structure. To confirm the NFO was
successfully introduced on the surface of LNCM material, we
further applied the Rietveld refinement. The XRD Rietveld
refinement patterns of pristine LNCM, LNCM calcined at 500
°C (LNCM-500), and NFO3 powders are shown in Figure S3.
All refinements fit well with the experimental data points (Rwp
= 6.67%, 8.08%, 6.67%, respectively). The crystallographic
details deduced from the refinement are given in Table S1. The
results suggest that the bulk structure of LNCM is not affected
by heat treatment or the NFO-coating process. Note that the
reflections result from NiFe2O4 (space group Fd3̅ m, JCPDS
entry 10-0325) can be observed, confirming the NFO coating
on LNCM (inset in Figure S3c). To further investigate the
surface structure, the Raman spectra of pristine LNCM and
NFO3 powder are shown in Figure S4. For pristine LNCM,
the Raman spectrum contains two strong peaks at around 485
and 600 cm−1, which can be assigned to Eg and A1g of the R3̅m
lattice,49 while the weak peak at ∼415 cm−1 represents Ag
mode of Li2MnO3 phase.

38 After the NFO coating, the Raman
spectrum shows a slight red shift, indicating probably bonding
between pristine LNCM and NFO coating. The two strong
peaks at 630 and 670 cm−1 are attributed to the characteristic
of cubic spinel, suggesting the presence of NFO coating.38,50

The particle morphologies of pristine LNCM and NFO-
coated samples are shown in Figure 1a,d and Figure S5,6.
Overall, the samples display similar morphology of agglom-
erated primary particles with spherical secondary particles.

After NFO coating, the spherical features are nearly
unchanged. The surface of the particles becomes rougher
with the increasing NFO amount, as observed in Figure 1d and
Figure S5. Subsequently, a transmission electron microscopy
(TEM) technique was used to further verify the presence of
NFO coating. Figure 1b shows a typical TEM micrograph of
pristine LNCM. The particle size is about 150 nm with a
smooth surface. In comparison, a uniform layer is evident in
NFO3 as observed in Figure 1e. The thickness of the layer is
calculated to be about 15 nm. The TEM images of NFO1,
NFO2, and NFO4 are shown in Figure S6. When the NFO-
coating amount applied is 1 wt %, the surface remains smooth
with nanoparticles anchored randomly (Figure S6a,d). As the
coating amount is increased, the coating layer becomes
rougher and thicker (Figure S6b,e and Figure S6c,f). Figure
1c,f show the details of the layered structure along with the
phase boundary between LNCM and NFO3. Figure 1c exhibits
a dihedral angle of 81.09°, corresponding to (111) and (111̅)
planes of the monoclinic Li2MnO3 phase. This morphological
feature is in good agreement with the single-phase Li2MnO3
crystal structure, as illustrated in the inset of Figure 1c and
Figure S7. The NFO coating on the surface of LNCM can be
observed with well-defined lattice planes spaced 0.20 and 0.24
nm apart, corresponding to (104) and (006) planes for the
hexagonal LiMO2 phase (Figure 1f). The calculated interfacial
angle between these two planes is 55.09°, in accordance with
the crystal structure of LiMO2 (Figure S8). On the NFO side,
the lateral LNCM/NFO heterointerface appears with a lattice
spacing of 0.20 nm corresponding to the (400) plane. In the
external surface, the lattice spacing of 0.25 nm belongs to the
(311) plane (indicated by the pink plane in Figure S9). These
interface features can be observed elsewhere, as shown in
Figure S10.
In the NFO structure, the tetrahedral site is filled by half of

Fe3+ ions, while the octahedral site is filled by Ni2+ and the
remaining Fe3+ ions.51 Compared with the phase compatible
coating that we reported before,36 there is a great difference
between perovskite structure and spinel structure. However,
similar to MnO6 octahedra in La0.8Sr0.2MnO3−y, NFO also has
NO6 octahedra. The octahedral N−O (N = Ni, Fe) distance in
NFO structure is about 2.03 Å, similar to the octahedral M−O
bond length in the LiMO2 phase (1.96 Å), thereby ensuring
the formation of a heterostructural O-sharing bonding between
the NFO and LNCM (Figure 1g). This M−O−N interface
bonding plays an important role not only in stabilizing lattice
oxygen not only in the LiMO2 grain boundary but also in the
strengthening of the coating during electrochemical cycling
(Figure 1h).
X-ray photoelectron spectroscopy (XPS) is a powerful

technique for investigating the oxidation states of surface
compositions with high sensitivity. Figure 1i shows the O 1s
spectra of the LNCM and NFO-coated samples. In brief, the O
1s spectra in all samples are mainly composed of two peaks
located at ∼529.5 and 531.5 eV, corresponding to oxide ions
(O2−) in the lattice and weakly carbonate species (CO3

2−) on
the surface, respectively (Figure 1i).52 The main peak shifting
slightly to high binding energy is observed after NFO surface
treatment. For example, the O 1s spectrum of NFO3 displays
three main components (Figure 1j): the one at lattice oxygen
529.5 eV is assigned to the O2− anions in the MO6 octahedra,
while the one at 530.1 eV is characteristic of the O2− anions in
the NO6 octahedra.53 The fitting procedure of the
experimental curve implies the presence of an additional
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component at ∼529.8 eV, suggesting the existence of an M−
O−N bonding network. The Ni 2p, Co 2p, and Mn 2p spectra
of LNCM and NFO-coated samples are shown in Figure S10.
The binding energies of Ni 2p3/2 (855.2 eV) and 2p1/2 (872.8
eV), as well as two satellite peaks are observed (Figure S11a),
which is the evidence of Ni2+.54 The Co 2p3/2 and 2p1/2 peaks
of the samples are observed at 780.6 and 795.6 eV with a
binding energy splitting of 15 eV, which confirms the oxidation
state of Co3+ (Figure S11b).55,56 As shown in Figure S11c, the
Mn 2p3/2 and 2p1/2 XPS spectra display binding energies of
642.5 and 654.4 eV, which demonstrates the existence of Mn4+

in both LNCM and NFO-coated samples.52 For Fe 2p XPS
spectra, the two main peaks located at 712.2 and 724.4 eV
correspond to Fe 2p3/2 and 2p1/2, which are in good agreement
with the data reported on Fe3+.57 Of note, the intensity of Fe
2p XPS spectra is mildly strengthened by increasing the NFO
coating (Figure S11d). The chemical composition of the
pristine LNCM and NFO was analyzed by energy dispersive
spectroscopy (EDS) elemental mapping. Figure S12 shows the
uniform distribution of Mn, Ni, and Co elements in pristine
LNCM. Similar features are also observed for Mn and Ni
elements in NFO3 (Figure 1k).
The charge−discharge curves for pristine LNCM and NFO-

coated samples are shown in Figure 2a and Figure S13a. In
general, all cathodes display similar typical electrochemical
behaviors as reported in the literature.22,58,59 The specific
charge curves of the samples exhibit a continuous slope under
4.5 V, which is related to the oxidation of Co3+ and Ni2+ to
Co4+ and Ni4+, respectively.60 A long plateau can be observed
at approximately 4.5 V, which is the characteristic O activation
in Li-rich layered oxides.59,61 Cyclic voltammetry (CV) of
pristine LNCM and NFO3 were performed at a scan rate of
0.1 mV s−1 between open-circuit voltage and 4.75 V (inset in
Figure 2a). Overall, the pristine LNCM and NFO3 show
similar CV curves. The anodic peak at 4.31 V in pristine
LNCM is ascribed to the Co3+/4+ and Ni2+/4+ redox couples,62

while the NFO3 shows lower anodic peaks (∼4.03 and 4.19
V), which indicates different redox couples are participating in
the charge storage in both materials.15 The noticeable anodic

peaks at 4.60 V for both samples represent lithium extraction
and oxygen activation, which results from Li2MnO3 phase in
Li1.2Ni0.13Co0.13Mn0.54O2.

63

Specifically, the pristine LNCM electrode delivers the
highest first discharge capacity of 273.0 mAh g−1 at 0.1 C in
these cathodes, while in the NFO-coated electrodes, NFO3
exhibits a higher first discharge capacity of 259.8 mAh g−1.
Moreover, the initial Coulombic efficiency (ICE) of the NFO3
electrode is 87.2%, higher than that of LNCM electrode
(84.3%), indicating an improved reversible anion redox.
Excellent rate capability is a further highlight of the good
electrochemical performance of the NFO3 electrode (Figure
2b and Figure S13b). NFO3 shows an average discharge
capacity higher than that of pristine LNCM at all rates except
0.1 C. In particular, the NFO3 electrode possesses a discharge
capacity of 109.4 mA g−1 at 5 C, which is almost 3 times higher
than that of LNCM (38.1 mAh g−1). Recent important work
on Li-rich layered oxides proposed that mitigating M (notably
Mn) migration and tuning oxygen redox to benefit the cationic
redox activity of O−Mn4+/Li+ sites will suppress phase
transition as well as O2 release.23,64,65 In addition, the
tetrahedral and octahedral positions in NiFe2O4 offer fast
electronic transport, resulting in good electrical conductivity.66

As a result, the electronic conduction at the electrode/
electrolyte interface was promoted. These findings explain why
NFO3 displays a better rate performance than the pristine
LNCM.
Figure 2c and Figure S13c show the cycle performance of

pristine LNCM and NFO-coated samples at 1 C. The NFO-
coated samples exhibit higher cycling stability than the pristine
LNCM. The NFO3 electrode delivers the highest discharge
capacity of 232.5 mAh g−1 at 1 C with a capacity retention
ratio of 91.8% (213.4 mAh g−1). By contrast, the pristine
LNCM displays only 114.5 mAh g−1 after 200 cycles, which is
51.5% of the initial discharge capacity at 1 C. In brief, the cycle
performance of NFO3 is superior to those of inorganic
coatings on Li-rich layered oxides (Tables S2). The energy
density degeneration, which is linked with voltage and capacity
fade, is the bottleneck of Li-rich layered oxides. Regarding

Figure 2. Electrochemical behaviors of pristine LNCM and NFO3 electrodes. (a) Galvanostatic charge−discharge profiles in the first cycle at
0.1 C (26 mAh g−1) inset with CV curves. (b) Rate capability. (c) Cycle performance and energy density for 200 cycles at 1 C after ten
formation activation cycles at 0.1 C. (d) Discharge profiles of NFO3. (e) Transition metal dissolution for LNCM and NFO3 electrodes after
60 cycles at 2 C.
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energy density on the electrode level (only active material was
taken into account),67,68 there is an evident difference between
LNCM and NFO3 electrodes. The energy density retention
has been gradually improved from 42% to 80% with an optimal
amount of NFO coating after 210 charge/discharge cycles.
It is well-known that Li-rich layered oxide cathodes undergo

voltage fade during the electrochemical cycling process, which
is a critical obstacle in a large scale battery application.
Therefore, we compared the discharge voltage profiles of
pristine LNCM and NFO3 at 1 C (Figure 2d and Figure
S13d). Both samples have a similar voltage fade during early
cycles. The pristine LNCM electrode shows a monotonically
voltage fade. A similar trend has been previously observed in
Li-rich layered oxides.7 This feature of voltage fade is partly
ascribed to the continuous reduction of metal cation.22 Of
note, a plateau located at about 2.7 V is pronounced with the
battery cycling. This lower plateau can be attributed to the
Mn3+/Mn4+ redox couple. In contrast, the NFO3 electrode
displays distinguishable mitigation of voltage fade during later
cycles, especially after 150 cycles. We note that the Mn3+/Mn4+

redox couple has been dramatically inhibited after NFO
coating, which was accompanied by reduced capacity loss.
After 150 cycles (Figure S14), the NFO3 electrode shows a
lower average charge voltage and higher discharge voltage,
suggesting that a lower internal resistance and polarization
compared to the pristine LNCM electrode. The dQ/dV curves
are plotted in Figure S15. By comparing Figure S15c,d, it is
obvious that the voltage decay has been effectively suppressed
via NFO coating, suggesting enhanced structural stability of
the NFO-coated LNCM.69 To clarify the critical role of NFO
at the surface, we measured the NFO between 2.00 and 4.75 V.
As shown in Figure S16, the spinel-type NFO show almost
negligible reversible capacity compare to LNCM. Therefore,
the NFO coating mainly acts as a protection layer with good
Li+ transport path.
High-temperature performance is essential for the practical

application of Li-rich oxide cathode materials. The decayed
cycle performance of Li-rich layered oxides at high-temper-
ature is mainly ascribed to the side reactions at the electrode/
electrolyte interface and the electrolyte decomposition.70 As
shown in Figure S17, the pristine LNCM electrode shows poor
cycle performance and severe voltage fade. In contrast, the
NFO3 exhibits improved cycle performance in comparison to
the pristine LNCM at elevated temperature. Notably, the
voltage fade was also greatly mitigated after NFO coating.
These results suggest that the M−O−N bonding network
greatly suppresses TM reduction (especially disproportiona-
tion of manganese) coupled with O2 release during cycling. To
further clarify these findings, we examined the resulting
electrolytes from cycled batteries with pristine LNCM and
NFO3 electrodes (Figure 2e). It is clearly shown that a battery
with pristine LNCM electrode displays a higher TM content,
having a total amount of 60.0, 27.5, and 33.9 mg L−1 for Mn,
Co, and Ni elements, respectively. In contrast, the amount of
TM dissolution for the NFO3 sample decreased to about one-
third of that for the LNCM sample, in line with the above
electrochemical behaviors. The result directly shows that TM
dissolution, especially Mn dissolution, has been inhibited by
the NFO coating.
Since the gas O2 mainly release during the first cycle,71

quantifying the amount of gas O2 after the first cycle could be
direct evidence to reveal the level of O2 release in both LNCM
and NFO3 electrodes. As a mature technique, gas chromatog-

raphy (GC) has been applied to quantify the gas species in
lithium-ion batteries.72,73 As shown in Figure S18, the bubble
in the LNCM electrode is more pronounced than that in the
NFO-coated electrode. In particular, the cumulative gas O2

detected from the LNCM electrode was 1.22 μmol. In
comparison, the gas O2 evolved in the NFO-coated electrode
was 0.56 μmol. Such an obvious difference indicates that
oxygen release from the lattice was suppressed after NFO
surface coating, and LNCM and NFO3 might display different
oxygen activities during battery cycling as well.
Therefore, we investigated the electronic structure of

manganese and oxygen using the ex situ XPS technique to
clarify the electrochemical redox change during the first cycle.
Figure 3 shows the XPS O 1s and Mn 2p spectra collected
from LNCM and NFO3 electrodes throughout charge/
discharge processes in the range 2.00−4.75 V. The selected
points for spectra collection are plotted in Figure 3a. On

Figure 3. XPS results of pristine LNCM and NFO3 electrodes. (a)
The measurements were applied to the first charge−discharge
process. (b, c) Evolution of O 1s XPS spectra of LNCM and NFO3
electrodes, respectively. Red crosses are experimental data, and
black curves are fits. The binding energy ∼529.5 eV corresponds to
the lattice O2− peak. The binding energy ∼530.5 eV represents the
oxidized lattice oxygen and the O2

n− component, while the binding
energy ∼531.7 eV is assigned to surface deposits. An extra peak at
∼527.3 eV is assigned to lithium oxide.77 (d, e) Evolution of Mn
2p XPS spectra of LNCM and NFO3 electrodes, respectively.
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charging to 4.00 V, the LNCM electrode is characterized by a
weak peak at 529.5 eV owing to lattice O2− (Figure 3b). A
strong peak that appears on the higher binding energy side of
lattice O2− at 530.5 eV can be assigned to oxidized lattice O2−

and O2
n− (n < 2), which is consistent with a previous report.74

The component at ∼531.7 eV is due to the oxygenated
deposited species on the surface. In particular, the degradation
of organic carbonate electrolyte may generate organic
oxygenated species, and their binding energies are observed
in the range 531.5−534.0 eV.75 Likewise, the inorganic species
(such as phosphates, fluorophosphates, lithium salt) originat-
ing from the degradation of the LiPF6 in the electrolyte are also
located at higher binding energy.76 When charging to 4.75 V,
the intensity of the O2

n− peak decreased in comparison to the
intensities of deposited species peaks. When the electrode is
operated in a discharging process, the O2

n− grows slightly at
the expense of lattice O2−. The absence of lattice O2− suggests
that the lattice oxygen was in the oxidized stage during
discharge processes. Besides these aspects, an interesting peak
at ∼527.3 eV binding energy is observed, which is in
agreement with the spectra of lithium oxide.77 Although this
peak seemed to appear rather randomly, its intensity variation
during charge−discharge implies its link with anionic redox.
Turning to NFO3, the most obvious difference is the

absence of the O2
n− component when the first charge proceeds

to 4.00 V (Figure 3c). We note that more O2
n− has generated

in the absence of a lattice oxygen signal (O2−) when NFO3
was charged to 4.75 V. Although there is no unified
understanding of oxygen redox in Li-rich layered oxides,

researchers agree with the viewpoint that lattice oxygen
undergoes a ⇔ ⇔− −O O On2

2 2redox.
5,78,79 Therefore, tuning

oxygen redox means to maximize the stage ⇔− −O O n2
2

. As shown in Figure S19, the LNCM displays a capacity
contribution of 41.5% (TM oxidation) and 58.5% (O
oxidation). Interestingly, the NFO3 exhibits a long plateau at
high voltage with a capacity contribution of 64.3% (O
oxidation). The longer O-redox plateau on charge and lower
irreversible capacity loss in NFO3 compared to those of
pristine LNCM suggest a higher level of ⇔− −O O n2

2 redox
after O-sharing bonding coating, consistent with the ex situ GC
and XPS results. The peak at 530.5 eV grows on charging to
4.75 V and gradually increases when discharging to 3.00 V. Of
note, the lattice O2− shows a rapid growth during the discharge
process and can be still observed in the second charge process.
These results suggest that the phase compatible NFO coating
tunes oxygen redox, especially in the first charge process. The
Mn 2p XPS spectra further support this contention, as shown
in Figure 3d,e. We note that two peaks at ∼642.0 and ∼654.0
eV are observed, which can be assigned to Mn 2p3/2 and 2p3/2.
The LNCM shows a rougher experimental curve than that of
the NFO3 electrode, indicating a thicker surface deposit layer.
In particular, the intensity of Mn 2p spectra in LNCM
decreased significantly with discharged to 3.00 and 2.00 V,
which is in accord with a previous report.52 In contrast, the
NFO3 electrode also shows distinct Mn 2p intensity below
4.00 V. The loss of signals at 3.00 and 2.00 V is attributed to
thick surface deposits. These deposited species are electro-

Figure 4. In operando Raman spectral evolution for pristine LNCM and NFO3 electrodes. Evolution of the bending modes δ (O−M−O) with
an A1g symmetry, peroxo O−O (O2

2−) bond stretching, and excerpts from the waterfall diagram of the Raman spectra for (a−c) LNCM and
(d−f) NFO3 electrodes, respectively.
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chemically stable at low potential. Upon charging, the intensity
of Mn 2p recovers at 4.00 and 4.75 V, indicating that the
majority of surface deposits disappear, maybe due to
electrochemical decomposition at high potential. In brief, the
findings from XPS spectra can be summarized via two aspects:
(1) O-sharing bonding LNCM/NFO heterostructure trapped
the oxidized lattice oxygen, tuning oxygen redox and ultimately
delivering a higher specific capacity and a lower amount of O2
release; (2) the reduced decomposition of carbonate solvent
mitigated HF formation, thereby inhibiting Mn dissolution
from LNCM.
Although ex situ XPS data provides details of chemical

evolution on the surface, they do not reveal the local structural
evolution. In operando Raman spectroscopy was carried out to
further understand the correlation between electrochemical
response and structural evolution of LNCM and NFO3 during
cycling. Previous studies proposed that the layered LiMO2
oxides with the Rm space group can be characterized by two
Raman active modes.80,81 One is the Eg vibration mode (O−
M−O shear-like form) where oxygens in adjacent parallel
layers move in opposite directions. The other is the A1g
vibration mode where oxygens in M−O stretch symmetrically
along the c axis. Figure 4 shows the in operando Raman spectra
of the LNCM and NFO3 electrodes during their first charge−
discharge cycle. The peak positions and intensity trends upon
cycling evidence the details of oxygen local environment tuned
by M4+−O.82 The spectral features are dominated by the
strong A1g band at ∼517 cm−1 in the low-wavenumber region
(400−680 cm−1), as shown in Figure 4a,d. The bands centered
around 517 cm−1 show different behaviors. Specifically, in
pristine LNCM, the band is the weakest in the lithiated state
(around 4.0 to 3.0 V), while in NFO3, the intensity of the
band reaches maximum close to the end of delithiation.
Therefore, we conclude that the oxygen local environment is
different in the two oxides, which further supports the O-
sharing bonding. We note that a group of weak Raman bands
are located within the low-wavenumber region upon battery
cycling (Figure S20). Compared with results for pristine
LNCM and NFO3, the appearance of bands at 443, 570, and
632 cm−1 represent the most difference in Raman spectral
evolution. The bands at 570 and 443 cm−1 are assigned to the
A1g and Bg modes of Li2MnO3 derived from the C2/m space
group symmetry (Mn4+−O).83 In previous reports,22,59 voltage
fade in Li-rich layered oxides were attributed to oxygen
surrounded by Mn4+ and Li+ ions (O−Mn4+/Li+) electron hole
localization and activating lower-voltage Mn3+/Mn4+ redox
couples. The (570, 443) cm−1 pair is the strongest at the end
of lithiation, indicating a high level of Mn3+/Mn4+ redox
couples in pristine LNCM. On the contrary, this pair of bands
were not pronounced in NFO3. Therefore, this finding
explains the NFO-coating-suppressed voltage fade during the
lower voltage stage. In addition, the new band at 632 cm−1 in
NFO3 is characteristic of Li-vacancy formation.82

Oxygen redox couples with TM cationic redox are used to
explain electrochemistry in Li-rich layered oxides. Accordingly,
peroxo-like species are likely to be formed in Li-rich layered
oxides during charging.84 Interestingly, a couple of new bands
at ∼850 cm−1 appear once the voltage reaches 4.5 V and
gradually become weaker during the subsequent discharging in
NFO3, which is not notable in pristine LNCM (Figure 4b,e).
These bands can be ascribed to peroxo O−O (O2

2−) bond
stretching, resulting from reversible oxygen redox in Li-rich
layered oxides.85 A similar trend is not observed in pristine

LNCM. This indicates that peroxo-like species are probably
oxidized to oxygen gas, consistent with the GC and ex situ XPS
results. Taking the δ(O−M−O) and peroxo O−O bond
stretching into account, we found they have almost the same
Raman spectral evolution (Figure 4d,e). In this case, links
between TM/Li arrangement in the TM layer and the
formation/dissociation of peroxo O−O bond can be
reasonably unified together. Coupling between oxygen redox
and cation migration has been proposed to explain cation/
anion redox chemistry in Li-rich layered oxides in which
overoxidation of the TM ions triggers O oxidation and
formation of peroxo-like O−O dimers.86−88 This structure-
redox coupled process [ + → +− −(O TM) (O TM )2

migration

] is attributed to a striking change in the local O
coordination environment. When applied NFO coating, the
M−O−N bonding greatly suppressed transition metal
reduction (especially disproportionation of Mn) coupled
with oxygen release during cycling, resulting from higher
cationic redox activity of O−Mn4+/Li+ sites. This direct
visualization of surface oxygen redox decouple with cation
migration explains why reversible oxygen redox can be
achieved after phase compatible NFO coating. In particular,
nonbonding coordination of surface oxygen has been avoided
by M−O−N bonding network. Thus, surface oxygen-cationic
vacancy undercoordination can be inhibited, in line with
previously reported data.89 In the midwavenumber region
(680−1300 cm−1), the Raman bands undergo similar evolution
in both pristine LNCM and NFO3 (Figure 4c,f). Our results
are consistent with Raman spectra of the LiPF6-salt electro-
lyte.90,91

Previous studies on Li-rich layered oxide cathodes proposed
that battery degradation upon long-term electrochemical
cycling is a result of structural changes, including layered to
spinel transitions,92 generation of defects, and nanovoids.23,93

Therefore, ex situ TEM analysis was performed to visualize the
localized structural rearrangements on surfaces. Figure 5a
shows a typical layered atomic column with simultaneous
amorphous (white dash lines) and nanovoid domains (yellow
dotted circles). A surface spinel-like layer is observed, where
the white dashed line and yellow dashed line indicate the
boundary of the spinel phase and layered phases, respectively
(Figure 5b). These findings suggest that the LNCM electrode
undergoes critical TM cation migration and O2 release during
extended cycling. The structure degradation is suppressed in
bulk LNCM after NFO-coating, indicating higher structural
stability of NFO3 electrodes than of LNCM electrodes. The
LNCM/NFO lateral heterostructure is still observed in the
form of parallel planes between (104) and (400) planes
(Figure 5c). A similar heterostructure is also observed between
the (006) plane in LNCM and the (311) plane in NFO
(Figure 5d). The superior structural stability of NFO-coated
LNCM was further confirmed by ex situ XRD analysis (Figure
S21). Considering that the R3̅ m phase accounts for the
majority of the active material (Table S3), we accordingly
investigated the Li/Ni mixing in the R3̅ m phase of LNCM. It
is found that 9.2(2)% of Li sites in Li slabs were occupied by
Ni in LNCM after prolonged cycling, whereas the value
decreased to 3.2(3)% in the NFO3 counterpart, confirming
that the Li/Ni mixing was significantly mitigated by NFO
coating. On the basis of the comparisons above, we can
conclude that the heterostructural O-sharing bonding between
LNCM and NFO plays a critical role in enhancing structural
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stability as well as electrochemical performance. A full
understanding of the O-sharing bonding mechanism is
illustrated in Figure 5e and Figure S22. According to a
previous report, all the layered, rock-salt, and spinel phases
possess a cubic close-packed oxygen lattice.65 Bond-length
contraction can lead to charge transfer from dangling oxygens
to the metal bonding partners.79 The surface M−O in MO6
and N−O bonds in NO6 octahedra are expected fractures
during synthesis. As a consequence, vacant O sites are
generated. The vacant O sites are supposed to subsequently
bond and hence form the M−O−N bonding between the
(104) and (400) planes.
Such a heterostructural O-sharing coating presents three

positive features: (1) The O-sharing bonds stabilize the surface
lattice oxygens. Thus, irreversible oxygen redox in the form of
O2

n−/O2 can be suppressed, resulting in decreased voltage fade
and enhanced first-cycle reversible. (2) Simultaneously, cation
migration into Li sites, which is coupled with oxygen redox,87

is therefore mitigated. Consequently, they inhibit the layered-
spinel transition and formation of MLi−VM defects during
cycling. (3) Lastly, side reactions such as Mn dissolution can
be inhibited through this phase compatible surface coating.

CONCLUSIONS
We developed a facile strategy to form a heterostructural
surface coating through M−O−N bonding. Instead of surface
M−O and N−O bonds, the surface regions of LNCM and
NFO share a fully bonded oxygen framework. The M−O−N
axes configurations are suggested to (1) impede adjacent
surface lattice oxygen from participating in anion redox, which
is expected to initiate at the surface, and (2) impede structural
collapse during the process of Li deinsertion. More
importantly, we direct capture the evolution of surface oxygen
decouple with cation migration through in operando Raman
spectroscopy. By optimizing the NFO-coating amount, high
cycle stability (91.8% at 1 C after 200 cycles) and rate

capability (109.4 mA g−1 at 1 C) were obtained for NFO3.
Our results suggest a feasible strategy to design an effective
surface coating for tuning oxygen redox in Li-rich layered
oxides.

EXPERIMENTAL SECTION
Synthesis of LNCM Materials. LNCM was synthesized by

coprecipitation as we reported previously.36 Typically, stoichiometric
MnSO4·H2O, CoSO4·H2O, and NiSO4·6H2O with Mn/Co/Ni molar
ratio 5.4:1.3:1.3 were dissolved in distilled water with continuous
stirring to produce a 1.0 M solution. The above solution was then
added to a 2.0 M NaOH aqueous solution with vigorous stirring
under a N2 atmosphere. The pH value was kept to 11 with NH4OH.
Subsequently, the precipitate was filtered, washed, and dried in a
vacuum oven at 80 °C for 24 h. After that, this hydroxide precursor
was mixed and ball-milled with stoichiometric Li2CO3 and then
calcined at 900 °C for 12 h in air.

Synthesis of NFO-Coated LNCM Materials. NFO material for
surface coating was synthesized via a coprecipitation method with
details as follows: The Li-rich powder was dispersed in a 100 mL
NH4OH solution by turbulent stirring at 80 °C for 3 h. Then,
stoichiometric Fe(NO3)3·9H2O and Ni(NO3)2·6H2O aqueous
solutions were added dropwise with strong stirring for 1 h. The pH
value was adjusted to 9 to obtain homogeneous hydroxides. After
being washed with distilled water several times, the mixture was
calcined at 500 °C for 4 h under N2 gas to obtain the NiFe2O4 coated
Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 powders. The weight ratios of NFO
on the coated samples were 1.0, 2.0, 3.0, and 4.0 wt %, respectively.
For comparison, LNCM without coating was also calcined at 500 °C,
termed LNCM-500.

Materials Characterization. The elemental composition of the
pristine LNCM and NFO3 powder were analyzed by inductively
coupled plasma-atomic emission spectrometry (ICP-AES, iCAP PRO,
Thermo Scientific; Table S4). XRD data were collected on a Rigaku
D/Max 2500 V/PC X-ray diffractometer with Cu Kα radiation (λ =
1.5406 Å, 40 kV, 50 mA) at scan rates of 2° min−1 and 0.5° min−1 (for
Rietveld refinement). Morphological studies were observed by using
field emission SEM (FEI Quanta 200) and transmission electron
microscopy (JEOL-2010F). High-resolution morphological features
and elemental analyses were conducted by high-angle annular dark-
field and annular bright-field scanning transmission electron
microscopy (HAADF-STEM, ABF-STEM, JEM-ARM200F) at a
beam voltage of 200 kV with attached EDS (NORAN System7,
Thermo Scientific). The oxidation states of transition metals (TM)
were measured using XPS (ESCALAB 250Xi, Thermo Scientific). In
operando Raman measurement was performed on a Raman
spectrometer (inVia, Renishaw) with a 514 nm wavelength laser, a
laser beam of ∼1 μm beam diameter, and 1 mW power. The cycled
batteries were opened, and surplus electrolytes were analyzed by ICP-
AES.

Electrochemical Test. To fabricate the electrode, the pristine
LNCM and NFO-coated LNCM powders as active materials (80 wt
%), super P (10 wt %) as a conductive agent, and poly(vinylidene
fluoride) (10 wt %) as a binder were mixed with N-methyl-2-
pyrrolidone (NMP) to form a slurry. The homogeneous slurry was
then cast onto aluminum foil, followed by drying at 80 °C for 12 h in
a vacuum oven. The mass loading of active material was ∼10 mg cm−2

with a compacted density of ∼3.7 g cm−3. Next, the material loaded
foil was cut into round cathodes with a diameter of 1.0 cm. Finally,
CR2032 coin cells were assembled in an argon-filled glovebox by
using Li foil as an anode, 1 M lithium hexafluorophosphate (LiPF6) in
ethylene carbonate (EC), diethyl carbonate (DEC), and dimethyl
carbonate (DMC) solution (volumetric 1:1:1) as the electrolyte, and
polypropylene membranes (Celgard 2400) as a separator. Before
electrochemical processes, each cell was aged for 12 h to ensure ample
soaking of the electrolyte into the electrode and separator.
Electrochemical measurement was performed on a LAND CT-
2001A cycler between 2.00 and 4.75 V at 25 °C temperature. The C-
rate is defined on the basis of 1 C = 260 mA g−1. For the postcycled

Figure 5. HRTEM images of local structure for LNCM and NFO3
electrodes. All electrodes were operated in a acharge/discharge
process after 200 cycles at 1 C rate. (a, b) LNCM electrode and (c,
d) NFO3 electrodes, respectively. (e) Schematic of the
heterostructural O-sharing bonding of LNCM (104 plane) and
NFO (400 plane).
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morphology characterization, active materials were scraped from the
electrodes and then washed in DMC before being loaded onto holey
carbon grids. The ex situ XRD measurement was collected from
cycled electrodes with Al foil. Cyclic voltammetry (CV) curves were
collected on an electrochemical workstation (Zahner IM6) at 0.1 mV
s−1 in the range 2.00−4.75 V.
Gas O2 Amount Test. The released gas O2 was detected ex situ by

GC (Agilent 7890B) using an internal standard method. Argon was
selected as a carrier gas at a flow rate of 25 mL min−1. To realize the
GC measurement, each cathode cell was punched a hole. These
CR2032 coin cells were assembled and tested for one cycle at 0.1 C
between 2.00 and 4.75 V. The discharged cells were transferred to a
nitrogen-filled glovebox for gas collection. Finally, the gas species in
the cycled cell were collected by a syringe sampler.
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