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ABSTRACT: Exploiting the efficiency and durability of oxygen
reduction reaction (ORR) electrocatalysts for Zn-air batteries
(ZABs) remains a tremendous challenge. In this work, a novel
sacrificial agent strategy was employed to construct vacancy-rich MnP/
Mn5.64P3 heterostructure nanobicrystals on nitrogen-doped carbon
(MnxPy/NC). Multiple ex/in situ characterizations reveal that the Cd
sacrificial agent induces structural reconstruction and vacancy
generation, which accelerates electron transfer, optimizes the trans-
formation of intermediates, and suppresses the production of
byproducts. As a result, the optimized MnxPy/NC catalyst shows
remarkable ORR activity, with an onset potential of 0.93 V and a
limited current density of 5.6 mA cm−2. Notably, MnxPy/NC-based
aqueous ZABs exhibit an impressive power density (135.9 mW cm−2)
and an ultralong cycle life (600 h), and the corresponding flexible device demonstrates excellent mechanical stability. This work
presents a strategy for designing highly active transition metal phosphide-based catalysts using the sacrificial agent toward the ORR.
KEYWORDS: Transition metal phosphide, Heterostructure; Vacancy engineering, Oxygen reduction, Zn-air battery

■ INTRODUCTION
Zn-air batteries (ZABs) are considered to be promising devices
for energy storage and conversion due to their high energy
density and eco-friendly nature.1−3 To improve the com-
petitiveness and efficiency of ZABs, several issues must be
addressed. The major one is to improve the kinetics of the
oxygen reduction reaction (ORR) in the air cathode discharge
process.4,5 Conventionally, Pt-based materials (PBMs) are the
benchmark catalysts for ORR, but the implementation is
hampered by issues such as natural scarcity, poor durability,
and susceptibility to byproducts.6,7 Therefore, it is crucial to
advance cost-effective alternatives for PBMs that can achieve
high efficiency and a long lifespan for ZAB technology.

Recently, there has been exploration of various non-noble
metal-based catalysts with potential applications, including 3d
transition metal-based carbides,8 nitrides,9 oxides,10 and
phosphides.11 Among these, transition metal phosphides
(TMPs) have garnered intensive attention owing to their
unique electron configuration, multifunctional active sites, and
affordability.12 However, there is still a lack of comprehensive
understanding of the effect of TMPs on ORR and the
underlying reaction mechanism, which motivates further
research enthusiasm.13 Universally, phosphorus (P) possesses
abundant valence electrons, which can induce delocalized
charge state density, thereby ultimately optimizing metal sites
electron configuration.14 Noticeably, the lone pair of electrons

on the 3p orbitals of P can interact with the 3d orbitals of
transition metals to endow large-scale charge density differ-
ences, favoring oxygen adsorption and subsequent *OOH
desorption during ORR.15 Compared with other transition
metals (Fe, Co, and Cu), Mn-based materials can offer unique
advantages in the ORR process due to their weak reactivity
with the Fenton reaction.16 Furthermore, Mn-based materials
reveal low toxicity and long life spans in electrochemistry
reactions.17 Unfortunately, relevant research on Mn-based
ORR electrocatalysts is still in infancy due to their
unsatisfactory activity.18 Therefore, various modification
methods, such as architectural strategies,19 interface engineer-
ing,20 and vacancy regulation,21 have been proposed to
enhance the performance of Mn-based phosphides. Nonethe-
less, conventional routes have not significantly improved the
ORR activity of Mn-based catalysts.

Here, we utilized Cd as a sacrificial agent to synthesize the
MnP/Mn5.64P3 heterostructure electrocatalyst (MnxPy/NC).
The optimized MnxPy/NC exhibited excellent four-electron
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ORR activity with a limited current density (jL) of 5.6 mA
cm−2 and an onset potential (Eonset) of 0.93 V. Such high
activity can be attributed to the strong coupling effect between
vacancy engineering and the MnP/Mn5.64P3 heterostructure.
In-situ techniques confirm that this strong coupling effect not
only promotes the fast conversion of intermediates but also
suppresses the generation of H2O2. Furthermore, the aqueous
MnxPy/NC-based ZAB exhibits high power density (135.9 mW
cm−2) and maintains stable charge−discharge cycling for over
600 h. The flexible ZAB assembled with catalyst displays
substantial power density (50.2 mW cm−2), surpassing that of
the one assembled with Pt/C (1.25 V and 42.8 mW cm−2),
demonstrating promising potential for practical applications.

■ RESULTS AND DISCUSSION
Figure 1a illustrates the detailed synthesis procedure of MnxPy/
NC. Typically, pyrrole (Py) monomers are polymerized as
polypyrrole nanospheres (PPy) with surface clusters (Figure
S1a), in which hexadecyl trimethylammonium bromide
(CTAB) acts as a surfactant and ammonium persulfate
(APS) acts as an oxidizing agent. Subsequently, Cd and Mn
ions are loaded onto these formed PPy nanoparticle surfaces
(Figure S1b). Ultimately, the metal-supported nanospheres are
calcined with red phosphorus at a high temperature to form
heterogeneous MnxPy/NC. As profiled in Figure 1b and c,
SEM and TEM images of MnxPy/NC identified a definite
three-dimensional (3D) interconnected nitrogen-doped car-
bon network loading with nanospheres, which not only
provides more shortcuts for mass transport but also ensures
the stability of active centers in the alkaline environment.22

The high-resolution TEM (HRTEM) image of MnxPy/NC
reveals a lattice spacing of 0.194 nm corresponding to the
(121) plane of Mn5.64P3 and 0.555 nm consistent with the
(100) plane of MnP (Figure 1d). Additionally, the selected
area electron diffraction (SAED) pattern reaffirmed the
coexistence of (610), (501), (330), (310) and (111) crystal
planes for MnxPy/NC and further revealed a polycrystalline
structure (insets of Figure 1d). Inductively coupled plasma
mass spectrometry (ICP-MS) detected 33.73 wt % Mn
element but no Cd element in MnxPy/NC (Table S1),
indicating that the Cd element has completely evaporated
during the high-temperature pyrolysis process (Cd boiling
point: 765 °C). The crystal phase of the MnxPy/NC composite
is analyzed by an X-ray diffraction (XRD) pattern, which
showed typical crystal structure peaks of MnP (JCPDS: 51−
0942) and Mn5.64P3 (JCPDS: 30−0823) (Figure 1e),
indicating that the composite is composed of two different
manganese phosphide components. A series of control
experiments are performed, while products can match well
with Mn5.64P3 (JCPDS: 30−0823), MnP (JCPDS: 51−0942)
and MnS (JCPDS: 06−0518), respectively (Figure S2). It is
worth noting that the formation of MnS is due to the addition
of APS. It is evident that the Cd sacrifice induces structural
reconstruction to form MnP/Mn5.64P3 heterostructure.23 The
specific surface area and pore size distribution of the catalysts
were characterized by N2 adsorption−desorption isotherms, as
shown in Figure S3 and S4. The isotherms of all samples
exhibit a type IV characteristic, indicating a typical mesoporous
structure. The Brunauer−Emmett−Teller (BET) specific
surface area of MnxPy/NC, Mn5.64P3/NC, and Cdvol/NC is

Figure 1. (a) The synthetic procedure of MnxPy/NC. (b) SEM image, (c) TEM image, and (d) HRTEM image (inset: SAED pattern). (e) XRD
pattern of MnxPy/NC. (f) N2 adsorption/desorption isotherms of MnxPy/NC and Mn5.64P3/NC. (g) EPR spectra.
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386.3, 185.6, and 382.3 m2 g−1, respectively. The pore size of
the samples was analyzed by the Barret−Joyner−Halenda
(BJH) method. It can be observed that the average pore
diameter decreases significantly from 128.1 nm (Mn5.64P3/
NC) to 3.8 nm (Cdvol/NC) and 3.7 nm (MnxPy/NC). The
substantial increase in specific surface area, combined with the
reduction in pore size for MnxPy/NC, provides an ideal space
for anchoring active sites and enhancing mass transfer. The
Raman spectra of different catalysts showed D (1345 cm−1)
and G (1590 cm−1) bands of carbon, corresponding to
disordered carbon and graphitic carbon, respectively.24 The
higher ID/IG band intensity ratio of MnxPy/NC (1.19) than
NC (1.17), Mn5.64P3/NC (1.11), and MnS/NC (1.09)
indicates ample disordered carbon is generated after pyrolysis
at 1000 °C (Figure S5). Typically, disordered carbon partially
reflects defects in the substrate, which is considered to be an
active substance which can significantly improve the oxygen
redox kinetics.25 Electron paramagnetic resonance (EPR)

spectroscopy serves as a powerful tool for vacancy character-
ization. As shown in Figure 1g, the characteristic signal at g =
2.001 corresponds to vacancies on the materials.26 Notably, the
EPR signal intensity in MnxPy/NC is obviously higher than
that in Mn5.64P3/NC, indicating that Cd evaporation leads to a
significant increase in the number of vacancies.

X-ray photoelectron spectroscopy (XPS) was employed to
gain detailed chemical state information. The survey spectrum
of MnxPy/NC confirmed the presence of Mn, P, N, and C, but
the absence of Cd, which is consistent with the ICP results
(Figure S6a). The C 1s XPS spectrum of MnxPy/NC was
deconvoluted into four components, including C�O (288.5
eV), C−O (286.0 eV), C−C/C−N (284.8 eV), and C�C
(284.0 eV), serving as a calibration standard (Figure S6b).27

The Mn 2p XPS spectrum of MnxPy/NC and Mn5.64P3/NC
showed three major binding energies at 646.3, 643.2, and 641.0
eV, corresponding to Mn4+, Mn3+, and Mn2+, respectively
(Figure 2a).28 Notably, there exists a higher proportion of

Figure 2. High-resolution XPS spectra of (a) Mn 2p, (b) P 2p, and (c) N 1s for MnxPy/NC and Mn5.64P3/NC, respectively.

Figure 3. (a) CV curves in N2 or O2-saturated 0.1 M KOH. (b) LSV curves with a rotation speed of 1600 rpm. (c) Comparison of E1/2 and Eonset of
MnxPy/NC with other advanced catalysts. (d) Tafel slope plots. (e) LSV curves of MnxPy/NC with different rotation speeds of 400−2025 rpm
(inset: K-L plots at different potentials). (f) H2O2 yields and transfer electron numbers.
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Mn3+ in MnxPy/NC (51.5%) than Mn5.64P3/NC (43.7%),
which can contribute to the ORR process according to
previous literature.29 There is no significant peak in the XPS
spectrum of Cd, confirming its absence in the sample and no
function during the electrocatalysis process (Figure S6c). In
Figure 2b, the peaks at 132.0, 133.5, and 135.4 eV are
attributed to P−C, P−N and P−O species, respectively,
implying partial P atoms were incorporated into carbon.30−32

The presence of the P−O bond can be attributed to oxygen
adsorption on the phosphorus surface, which suggests that the
material has a strong interaction with the oxygen-containing
intermediate.33 Furthermore, peaks at binding energies of
129.0 and 130.2 eV are attributed to 2p1/2 and 2p3/2 of P
species, certifying the formation of phosphide.34 The N 1s
spectra of two samples showed three peaks at 400.5, 398.4, and
396.1 eV, corresponding to graphitic-N, pyrrolic-N, and
pyridinic-N, respectively (Figure 2c).35,36 Obviously, there
are more pyrrolic-N and pyridinic-N in MnxPy/NC (55% and
21%) than in Mn5.64P3/NC (45% and 20%). According to the
elemental analysis results, the total N content in MnxPy/NC is
2.04 wt %, significantly higher than that in Mn5.64P3/NC (1.59
wt%) (Table S2). Previous research indicates that the
augmentation of N content, specifically the ratio of pyrrolic-
N and pyridinic-N, has the potential to regulate the electron/
spin state density of the material.37 Furthermore, the presence
of pyridinic-N is indispensable for initiating the initial electron
transfer and activating the neighboring atoms during the ORR
process.38

The ORR electrochemical performance was tested by using
the standard three-electrode system. To convert the measured
potential to RHE, we systematically conducted the exper-
imental calibration of the reference electrode against RHE
(Figure S7, S8 and Table S3).39 All catalysts were uniformly
deposited on the electrode surface to minimize errors during
testing (Figure S9).40 The optimized calcination temperature
and the corresponding performance parameters are presented
in Figure S10, where the best catalyst was obtained at an
annealing temperature of 1000 °C. In Figure 3a, a more

positive oxygen redox peak at 0.8 V was observed in the O2-
saturated 0.1 M KOH solution, indicating promising ORR
activity of MnxPy/NC.41 Meanwhile, the MnxPy/NC exhibited
excellent performance in linear sweep voltammetry (LSV)
curves (E1/2 = 0.77 V, Eonset = 0.93 V, jL = 5.6 mA cm−2@0.2
V), which was superior to Mn5.64P3/NC (E1/2 = 0.71 V, Eonset =
0.90 V, jL= 3.7 mA cm−2@0.2 V), Cdvol/NC (E1/2 = 0.77 V,
Eonset = 0.92 V, jL= 4.4 mA cm−2@0.2 V) and MnP (E1/2 = 0.64
V, Eonset = 0.78 V, jL= 2.8 mA cm−2@0.2 V) (Figure 3b and
S11). Furthermore, the excellent ORR activity of the MnxPy/
NC can be compared with that of Pt/C (E1/2 = 0.85 V, Eonset =
0.90 V, jL= 5.18 mA cm−2@0.2 V) and previous catalysts
(Figure 3c and Table S4). Typically, a larger jL indicates more
favorable mass transfer characteristics, while the theoretical
limiting current density is approximately 6 mA cm−2. The
observed deviation may arise from differences between
practical and theoretical conditions, as well as variations in
the mass transfer efficiency of catalysts toward O2.

42 Mean-
while, a more positive Eonset indicates a quicker electron
transfer rate, while a higher E1/2 indicates a stronger intrinsic
activity.43 Furthermore, the Tafel slopes of MnxPy/NC, NC,
Mn5.64P3/NC, and Pt/C were calculated from the LSV curves
and used to analyze the ORR catalytic kinetics. The Tafel slope
plots in Figure 3d follow the sequence: MnxPy/NC (57.2 mV
dec−1) < Cdvol/NC (71.8 mV dec−1) < Mn5.64P3/NC (76.8
mV dec−1) < Pt/C (81.3 mV dec−1) < MnS/NC (88.9 mV
dec−1). A smaller Tafel slope indicates faster ORR kinetics for
the MnxPy/NC catalyst. Its Tafel slope differs from reported
values for the typical 2 + 2e− ORR pathway, and its LSV curve
lacks the two-plateau characteristic of this mechanism. Thus,
the MnxPy/NC catalyst primarily follows the 4e− ORR
pathway. The enhanced electrochemical performance can be
attributed to the beneficial interfacial coupling effect and
increased vacancy induced by Cd sacrifice, which modulate the
electronic structure of the catalyst to optimize the adsorption−
desorption equilibrium of reaction intermediates. The
Koutecky−Levich (K-L) equation is used to analyze the
kinetic parameters of ORR on the catalyst surface. In

Figure 4. (a) Electrochemical double layer capacitance and (b) CV fitting curves in 0.1 M KCl containing a 5 mM K3[Fe(CN)6] solution. (c) LSV
curves of MnxPy/NC before and after KSCN. (d) Methanol tolerance test. (e) Chronoamperometric (CP) responses for MnxPy/NC and Pt/C. (f)
LSV curves of MnxPy/NC before and after 1000 CV cycles.
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agreement with the literature, the electron transfer number
obtained from the K-L equation is close to 4 (Figure 3e, inset:
K-L plot) after treating the current density for the 0.3−0.6 V
potential interval, suggesting that MnxPy/NC mainly follows
the 4e− ORR pathway.44−48 Figure 3f provides further insight
into the catalyst reaction route and calculated HO2

− yield of
ORR, where the HO2

− yield is below 5%, and the average “n”
value of MnxPy/NC is close to 4, indicating a 4e−-dominated
reaction pathway.

Electrochemical double layer capacitance (Cdl) was calcu-
lated by CV curves in the nonfaradaic potential range which is
relevant to the electrochemically active surface area (ECSA)
(Figure S12). MnxPy/NC offers the highest Cdl of 11.7 mF
cm−2, indicating the most plentiful active sites, vastly superior
to that of Mn5.64P3/NC (0.8 mF cm−2) (Figure 4a). The linear
relationship was obtained by CV test in a mixed solution of 5
mM K3[Fe(CN)6] + 0.1 M KCl (Figure S13), and the electron
transfer characteristics were evaluated by the Randles−Sevcik
equation. The ECSA value of MnxPy/NC is 0.73 m2 g−1

(Figure 4b), being 1.24, 1.78, and 1.22 times greater than
that of Mn5.64P3/NC (0.59 m2 g−1), NC (0.41 m2 g−1) and
MnS/NC (0.60 m2 g−1), respectively. Generally, SCN−

featured a formidable affinity with metal ions, thus poisoning
active centers smoothly.10 The LSV curves of MnxPy/NC
before and after adding the KSCN solution revealed that E1/2
declined by 12 mV and jL by 0.75 mA cm−2@0.2 V, which
identifies Mn species acting as the major ORR active species
(Figure 4c). Furthermore, the ORR activity appears to remain
in the LSV curve obtained after reaction with SCN−, which
could be attributed to the presence of NC acting as a
secondary active site in the oxygen reduction. The methanol
tolerance test was executed by injecting 3.0 M methanol into
the electrolyte during the CP course, and MnxPy/NC exhibited
a marvelous tolerance with a 99.4% retention rate, over-
matching Pt/C (78.7%) (Figure 4d). The durability of the
MnxPy/NC was assessed by the CP curve, which retains 94%
after 40000 s, while the Pt/C showed a poorer durability
(87.4%), due to the agglomeration effect of Pt particles (Figure

4e).49 Similarly, the E1/2 of MnxPy/NC was almost unchanged
and jL decreased by only 0.3 mA cm−2 at 0.5 V after 1000
cycles of CV scans, confirming its extraordinary stability
(Figure 4f). The above results signify that MnxPy/NC
possesses a more admirable methanol tolerance and stability
than Pt/C, certifying its potential practical application
prospects in direct methanol fuel cells and metal−air batteries.

The vacancy engineering will influence the catalytic behavior
of the active centers. An in-depth understanding of the oxygen
reduction mechanism over the Mn active center would in turn
guide the rational design of efficient metal-based phosphides.
Herein, by combination with in situ Raman and in situ Fourier
transform infrared spectroscopy (FTIR), the active reinforced
mechanism of rich-vacancy MnxPy/NC was unclosed.
In-situ FTIR spectra of both MnxPy/NC and Mn3P5.64/NC

were recorded between 1000 and 1600 cm−1 in the potential
region from 1.0 to 0.3 V (vs RHE) (Figure 5a). For both
catalysts, a distinct absorption peak located at ≈1112 cm−1

corresponds to the O−O stretching mode of adsorbed O2
molecules.50 The peak at 1212 cm−1 emerges and increases
gradually with decreasing potentials, indicating the bending
mode vibrations of adsorbed *OOH on the catalyst surface.51

Additionally, the distinct peaks appeared at the band positions
of ∼1312 cm−1, attributed to surface-adsorbed hydroperoxide
(*H2O2).

52 Notably, with the decrease of potentials, their
intensities increase significantly in Mn3P5.64/NC, demonstrat-
ing the gradual accumulation of *O2, *OOH and H2O2, and
inevitable generation of byproduct H2O2. In contrast, these
tendencies are not obvious in MnxPy/NC, which indicates a
strong catalytic capability of MnxPy/NC for the conversion of
intermediates (including *O2 to *OOH and *OOH to *O). It
is therefore reasonable to deduce that MnP facilitates O2
adsorption and transformation of intermediates (*O2 and
*OOH), thus accelerating the oxygen reduction kinetics. In-
situ Raman spectroscopy was further conducted to elucidate
the transformation of *OOH during the ORR electrocatalysis
(Figure 5b). A distinct Raman peak at ≈ 820 cm−1, assigned to
*OOH, was detected for both MnxPy/NC and Mn3P5.64/NC,

Figure 5. (a) In-situ FTIR collected on MnxPy/NC (left) and Mn3P5.64/NC (right), and (b) in-situ Raman spectroscopy collected on MnxPy/NC
(left) and Mn3P5.64/NC (right) during ORR electrocatalysis.
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and become increasingly pronounced as the applied potential
decreases.53 This Raman peak corresponding to *OOH species
appeared at a lower potential (1.00 V) for MnxPy/NC
compared with that for Mn3P5.64/NC (0.90 V), suggesting
that the formation of *OOH is significantly accelerated on
vacancy-rich MnxPy/NC heterostructures. Additionally, this
signal associated with *OOH disappears at 0.2 V for MnxPy/
NC, whereas Mn3P5.64/NC exhibits a weak Raman signal.
These phenomena indicate a faster conversion of *O2 to
*OOH and *OOH to *O on MnxPy/NC during the ORR.

Encouraged by the robust ORR performance, we conducted
ZAB tests using MnxPy/NC as the air cathode (Figure 6a). The
MnxPy/NC-based ZAB demonstrated an OCV of 1.40 V,
surpassing that of Pt/C (1.35 V) (Figure 6b). Moreover,
MnxPy/NC-based ZAB manifested a larger peak power density
(135.9 mW cm−2) than Pt/C (126.5 mW cm−2) and recently
reported materials (Figure 6c and Table S5). Figure 6d
presents the specific capacity based on the normalized mass of
the consumed Zn. The MnxPy/NC-based ZAB has a specific
capacity of 866.1 mAh g−1 (theoretical energy density: 1601.9
mWh g−1), outperforming the commercial Pt/C-based ZAB

(690.3 mAh g−1, theoretical energy density: 1276.8 mWh g−1).
Due to the poor OER activity of the catalyst (Figure S14), and
in order to make ZAB show good reversibility in the stability
test, MnxPy/NC + RuO2 was mixed with a mass ratio of 1:1 as
the air electrode. Figure 6e is the corresponding charge/
discharge cycle curve of MnxPy/NC-based ZAB, with an inset
reflecting the voltage gap at the start and end. During initial
cycles, the MnxPy/NC-based ZAB exhibited charge and
discharge voltages of 2.27 and 1.05 V, respectively, with a
voltage gap of 1.22 V. Even after a charge−discharge cycle of
more than 600 h, the voltage gap only increases by 0.21 V,
demonstrating the ultralong stability for this device. In
contrast, a Pt/C-based ZAB exhibits an excessively wider
charge/discharge voltage over 70 h. Also, the round-trip
efficiency remained at 45.5% even after the 600 h cycle. To
explore the application of MnxPy/NC in wearable devices, a
solid-state flexible ZAB configuration was implemented
(Figure 6f). The MnxPy/NC-based flexible ZABs delivered
an OCV of 1.34 V (Figure 6g) and a power density of 50.2
mW cm−2 (Figure 6h), which is superior to Pt/C (1.25 V and
42.8 mW cm−2). As shown in Figure 6i, this flexible ZAB can

Figure 6. (a) Schematic configuration of the assembled ZAB. (b) OCV plots of MnxPy/NC and 20 wt % Pt/C. (c) Discharge polarization curves
and the corresponding power density curves. (d) Specific capacity plots. (e) Galvanostatic cycling at 5 mA cm−2 (inset: curves at the start and end
of tests). (f) Configuration, (g) OCV plots, (h) discharge polarization curve, and corresponding power density curves of flexible solid-state ZAB. (i)
Photos of the LED panel powered by flexible ZAB at different folding angles of 0°, 30°, 60°, 90°, and back to 0°.
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smoothly illuminate the LED board while being bent at
different angles (0°, 30°, 60°, and 90°), and the LED board
remained lit when the flexible ZAB was bent back to 0°. The
galvanostatic discharge curves show that the MnxPy/NC +
RuO2-based flexible ZAB maintains a stable discharge for over
24 h (Figure S15). In contrast, the ZAB assembled with Pt/C
+ RuO2 exhibits severe degradation after 20 h of operation,
highlighting the superior structural stability of the MnxPy/NC-
based flexible ZAB. Overall, these findings demonstrate the
potential of MnxPy/NC for practical energy device applications
ranging from conventional ZABs to flexible battery config-
urations.

Generally, the ORR mechanism (4e− pathway) consists of
four primary stages: O2 adsorption on active sites followed by
protonation to form *OOH; cleavage of *OOH to generate
adsorbed *O; protonation of *O to produce OH−; desorption
of OH− from the catalyst surface.54 The selectivity of an
electrocatalyst for the ORR is determined by its interaction
with the intermediate OOH*. A strong interaction with
OOH* will lead to the breaking of the O−O bond, initiating a
4e− dominated reaction pathway.55 Mn-based phosphides are
known for their moderate adsorption strength for intermedi-
ates and inactivity toward the Fenton reaction, which
optimizes the reaction process and promotes 4e− ORR
route.56 For instance, Dou et al. reported that Co2P materials
shifted the d-band center positively by approximately 1.72 eV
compared to pristine Co, which facilitates the reaction of
intermediates with active sites.57 Similarly, Chao et al.
introduced Mn into Co−M−C to synthesize MnCo−N−C
and reduce the yield of H2O2 by about 15%.58 Furthermore, a
mass of research proves that constructing vacancies and
coupling heterogeneous components are efficient tactics to
improve electrocatalyst activity. Duan at al. reported that
vacancies could weaken the hybridization of Ni 3d and P 2p
orbitals, enriching the electron density of Ni and P atoms
nearby the vacancy to facilitate the adsorption of active
intermediate.59 Kong et al. combined rich-N carbon with
deficient-N carbon to optimize the electron cloud density at
the interface, thus increasing the half-wave potential of the
composite by 15%.47

Based on the above discussion, the extraordinary ORR
activity and ZAB performance of the MnxPy/NC catalyst can
be attributed to the following factors. (1) High specific surface
area and porous structure are beneficial to exposing active sites
and facilitating mass transport. (2) The inactivity of MnxPy
toward the Fenton reaction can optimize the 4e− reaction
route. (3) The vacancy-rich MnP/Mn5.64P3 heterostructure
promotes electron transfer and intermediate transformation.

■ CONCLUSIONS
In summary, vacancy-rich MnxPy/NC nanobicrystals were
developed through a feasible Cd-sacrificial agent strategy for
the oxygen reduction reaction (ORR) and Zn-air battery
(ZAB). Experimental investigation confirmed the strong
interaction between two manganese phosphides featuring
abundant vacancies and a 3D interconnected network-
supported nanosphere architecture, facilitating the trans-
formation of intermediates and exposure of active sites.
Hence, MnxPy/NC exhibited 4e− selectivity and superior
ORR activity. Furthermore, the catalyst-based ZAB demon-
strated a higher peak power density than Pt/C. Moreover, the
corresponding flexible device maintained a consistent voltage
across varying bending angles (bent at 0, 45, and 90°),

indicating its superior flexibility and wearability. This study
presents an avenue for the rational design and construction of
efficient catalysts for ZABs and other energy storage devices.
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