Shaggy-like Ru-clusters decorated core-shell metal-organic framework-derived CoO$_x$@NPC as high-efficiency catalyst for NaBH$_4$ hydrolysis

Shasha Dou a, Wanyu Zhang a, Yuting Yang a, Shuqing Zhou a, Xianfa Rao b, Puxuan Yan a, Tayirjan Taylor Isimjan c, Xiulin Yang a,*

a Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
b School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
c Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia

HIGHLIGHTS

- Ru/CoO$_x$@NPC is fabricated by a seed-mediated growth plus precise calcination.
- The catalyst exhibits high activity and reusability for NaBH$_4$ hydrolysis.
- Carbonized ZIF-8 and ZIF-67 provide high conductivity and rich active sites.
- The superior performance attributed to the synergy of Co oxides and Ru clusters.

GRAPHICAL ABSTRACT

![Ru-clusters decorated core-shell MOF-derived CoO$_x$@NPC]

ABSTRACT

Achieving high catalytic performance with the lowest possible amount of noble metal is critical for any catalytic applications. Herein, we report a controllable method of preparing low Ru loaded, N-doped porous carbon embedded with cobalt oxide species (Ru/CoO$_x$@NPC) using core-shell metal-organic framework (MOF) as a template. The optimized catalyst exhibits a highly powerful yet stable performance of H$_2$ production through sodium borohydride (NaBH$_4$) hydrolysis. The Ru/CoO$_x$@NPC catalyst shows a fast H$_2$ generation rate (8019.5 mL min$^{-1}$ g$_{cat}^{-1}$), high turnover frequency (1118.6 mol min$^{-1}$ mol$_{Ru}^{-1}$), and reusability. The carbonized ZIF-8 core and the ZIF-67 outer shell supplies a porous carbon moiety that not only improves the conductivity and but also provides uniform distribution of the active sites. The XPS analysis indicates that there is a strong electronic interaction.

Keywords: Metal-organic frameworks, N-doped porous carbon

* Corresponding author.
** Corresponding author.
E-mail addresses: isimjant@sabic.com (T.T. Isimjan), xlyang@gxnu.edu.cn (X. Yang).
0360-3199/© 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Introduction

The growing demand for fossil fuels (e.g., coal, oil and natural gas, etc.) is a significant cause of global warming resulted from accessed CO₂ emissions [1,2]. Therefore, developing a sustainable energy source and decreasing fossil fuel dependency is the central theme of clean energy research [3]. As an alternative energy carrier, hydrogen is becoming more and more viable due to its high energy density and zero CO₂ emission [4]. The two main challenges in developing H₂ fuel are the cost of hydrogen storage methods for subsequent use can be divided into physical storage [5], such as pure hydrogen storage via compression and liquefaction, and chemical storage including metal hydride [6] and liquid organic hydrogen carriers [7], etc. As a chemical storage approach, the metal hydrides (e.g., NaBH₄, LiAlH₄, MgH₂, etc.) have received more and more attention in recent years due to their safety, and adaptability to the mild reaction conditions [8,9]. Among them, sodium borohydride (NaBH₄) has the advantages of high hydrogen density, non-flammability, controllable hydrogen production rate, moderate operating temperature, excellent stability in alkaline solution, non-toxic hydrolysis by-products [10,11], etc. One of the widely believed challenges in using NaBH₄ as the hydrogen storage material is regeneration. However, recent studies have shown that NaBH₄ can be regenerated by high-energy ball milling of the hydrolysate in an argon atmosphere at room temperature. The yield can reach up to 80%, and it is scalable [12]. In addition, some other regeneration methods have reported regeneration rates ranging from 60% to 90% [13–15].

However, the spontaneous hydrolysis of NaBH₄ is a slow process thereof requires an efficient catalyst to decrease the activation energy and increase the reaction rate [16,17]. The commonly used catalysts are mainly noble metals, such as Pt/CoOx–Co₇Ni₂Oₓ [18], Pt–Co/carbon nanosphere [19], Pd/PD-ZIF-67 [20], Ag–Ni nanoparticles [21], Ru-Co catalysts [22], Ru/ZIF67 [23], etc. Same as other noble metal catalysts, they are limited by cost for industrial application [9]. As a result, many efforts have been devoted to developing Co-based non noble metal catalysts for NaBH₄ hydrolysis due to the high activity and low cost [14,24,25]. Nevertheless, they are suffered from rapid deactivation [26,27]. Recently, we reported a novel method of incorporating relatively small amounts of RuPs onto hierarchically structured cobalt phosphate arrays on nickel foam. This approach produced a highly efficient and stable catalyst for hydrogen generation from NaBH₄ hydrolysis in alkaline media [28].

Experimental section

Synthesis of ZIF-8 and nitrogen-doped porous carbon (NPC-8)

All chemicals used in this work are analytical grades and used directly without further purification. In a typical synthesis, we first prepared two stock solutions in methanol including, Zn(NO₃)₂·6H₂O (3 mmol, 30 mL) and 2-methylimidazole (2-Melm, 12 mmol, 10 mL). Then, the 2-Melm solution was added to a zinc nitrate solution and aged for 24 h at room temperature. The resulted white precipitate was collected by centrifugation, washed three times with methanol and vacuum-dried at 70 °C for 12 h. The obtained white powder was heated to 800 °C with a heating rate of 5 °C min⁻¹ under Ar atmosphere and kept at 800 °C for 2 h. The collected sample was nominated as nitrogen-doped porous carbon (NPC-8).

Synthesis of ZIF-67 and CoOₓ@N-doped carbon (CoOₓ@NC-67)

Firstly, two stock solutions such as Co(NO₃)₂·6H₂O (1.6 g, 80 mL) and 2-Melm (3.7 g, 80 mL) were prepared in methanol. Secondly, the solution of 2-Melm was quickly poured into the solution of Co(NO₃)₂·6H₂O and then aged for 24 h at room temperature. The resulted white precipitate was collected by centrifugation, washed three times with abundant methanol.
and vacuum-dried at 70 °C for 12 h. Finally, the obtained purple powder (ZIF-67) was heated to 800 °C with a heating rate of 5 °C min⁻¹ under Ar atmosphere and kept at 800 °C for 2 h. The resulted sample was named as CoOx@nitrogen-doped porous carbon (CoOx@NPC-67, includes Co metal when x = 0).

Synthesis of ZIF-8@ZIF-67 and CoOx@NPC composites

ZIF-8 (240 mg) was dispersed in 30 mL of methanol to form a homogeneous suspension after 30 min of sonication. A stock solution of Co(NO₃)₂·6H₂O (531 mg, 9 mL) and 2-MeIm (2.685 g, 9 mL) was added to the above suspension. Five minutes later, the obtained solution was transferred to an autoclave and kept at 100 °C for 12 h. After cooling to room temperature, the formed precipitate was centrifuged, washed with a large amount of methanol, and vacuum-dried at 70 °C for 12 h. The obtained purple precipitates are named as ZIF-8@ZIF-67. As a control, different molar ratios of Co/Zn precursors were used to synthesize a series of ZIF-8@ZIF-67. The ZIF-8@ZIF-67 composite was then heated to 800 °C with a heating rate of 5 °C min⁻¹ under Ar atmosphere and kept at 800 °C for 2 h. The resulted sample was nominated as CoOx@nitrogen-doped porous carbon (CoOx@NPC). The content of C and N in the optimized material was analyzed by an element analyzer (Table S1), while Co and Zn were measured by ICP-AES (Table S2).

Synthesis of Ru/CoOx@NPC composite

Typically, 30 mg CoOx@NPC and different masses of RuCl₃·3H₂O were ultrasonically dispersed into 20 mL H₂O to form a homogeneous suspension. After continuous stirring for 5 h, 2 mL of 0.6 M NaBH₄ solution was added dropwise into the above mixture. Thirty minutes later, the resulted black precipitate was centrifuged, washed with water, and finally freeze-dried at 70 °C for 12 h to obtain the final product of Ru/CoOx@NPC. The ICP-AES test results show that the mass percentage of Ru in the composite ranges from 1.69 wt% to 3.38 wt%, and the Ru mass percentage of 2.73 wt% has the best catalytic performance.

As a comparison, a mass percentage of 2.72 wt% Ru was applied to synthesize all other control catalysts. Notably, all the synthetic processes were as described above besides that the mass of the RuCl₃·3H₂O was fixed at 8.0 mg, and the support was replaced with NFC-8, CoOx@NC-67, and XC-72 carbon black, respectively. The obtained catalysts were nominated as Ru/NFC-8, Ru/CoOx@NC-67, and Ru/CB, respectively.

Catalyst characterizations

The crystal structure of catalysts was analyzed by X-ray powder diffraction (XRD, Rigaku D/MAX 2500 V/PC) with a sweep speed for 2.0° min⁻¹. The morphologies and microstructures of the catalysts were characterized by scanning electron microscope (SEM, FEI Quanta 200 FEG) and transmission electron microscope (TEM, JEM-2100F). The X-ray photoelectron spectrometer (XPS, JPS-9010 Mg Kα) was used to analyze the chemical states of different elements. The specific surface area of the as-prepared product was measured on a Quantachrome Autosorb AS-1 instrument. The actual loadings of various metals in the catalyst were checked by inductively coupled plasma atomic emission spectroscopy (ICP-AES, IRIS Intrepid II XSP).

Catalytic hydrolysis for H₂ generation

The catalytic activity, cycle stability and activation energy of the catalytic materials were obtained by the following methods. First, 50 mL of 150 mM NaBH₄ (containing 0.4 wt% NaOH) was added to a three-necked round bottom flask (100 mL) and continuously stirred in a water bath at 25 °C for 0.5 h until the connected electronic balance stabilized to zero. Then, 10 mg of the catalyst was added to the above solution at 25 °C under continuous stirring. The generated H₂ was evaluated by drainage method, where the overflowed water was collected during the catalytic H₂ production process and the quality of the water was recorded in real-time via a computer-connected electronic balance. The hydrogen generation rate (HGR) and turnover frequency (TOF) can be obtained by converting the quality of the drainage water over time (see supplementary information) [33,34]. To test the catalyst’s reusability, we measured the catalytic performance five times at 25 °C. After each reusability test, we centrifuged the catalyst, dried it under vacuum at room temperature, and obtained the catalyst’s weight. All experiments were repeated three times to ensure reliable results. The activation energy of the designed catalyst was evaluated in the same device in the temperature range of 298–318 K.

Results and discussion

Synthetic strategy analysis

The schematic diagram of the preparation method of porous Ru/CoOx@NPC composite is shown in Scheme 1. Step 1: the ZIF-8 was synthesized by a conventional manner, in which a mixture of zinc nitrate and 2-MeIm in methanol was aged at room temperature for 24 h [35]. Step 2: the ZIF-67 was grown onto the ZIF-8 surface to form ZIF-67@ZIF-8 composite through the hydrothermal method at 100 °C for 24 h [30,36]. Step 3: the ZIF-8@ZIF-67 composite was placed in a ceramic boat and carbonized at 800 °C to prepare the CoOx@NPC composite. Step 4: the Ru clusters loading process was accomplished through direct chemical reduction of Ru⁴⁺ using NaBH₄ solution. The actual Ru loadings were determined by ICP-AES and the corresponding results were used to calculate the HGR and TOF values (Table S3). The rest of the controls were prepared in the similar manner. Moreover, a detailed investigation of the pyrolysis process of each intermediate using thermogravimetric (TG) analysis combined with mass spectrometry (MS) gives a useful insight of the pyrolysis mechanism (Fig. S1).

Crystallinity, microstructure and porosity analysis

Scanning electron microscopy (SEM) showed that the as-prepared ZIF-8 and ZIF-67 had a similar polyhedral morphology with an average particle size of 400 nm (Figs.
The ZIF-67@ZIF-8 is about 500 nm in particle size (Fig. S2c), suggesting around 100 nm ZIF-67 grown on the ZIF-8. As shown in Fig. 1a, transmission electron microscopy (TEM) image shows that ZIF-8@ZIF-67 exhibits a clear edges and well-defined polyhedral structures, and the corresponding elemental distribution mappings further clearly demonstrate the existence of the core-shell structure (Fig. 1b–d). Upon carbonized at 800 °C for 2 h in Ar atmosphere, the polyhedral morphology of ZIF-8@ZIF-67 was partially inherited to the CoOx@NPC (Fig. 1e). It is worth noting that a large number of carbon nanotubes penetrate through the structure of the collapsed polyhedron, and the surface is distributed with many particulate materials. After chemical reduction of the Ru clusters, we did not observe any notifiable changes in the microstructure, indicating that the deposition of Ru clusters on the surface of CoOx@NPC does not affect in the overall morphology of CoOx@NPC (Fig. 1f).

The X-ray diffraction (XRD) patterns of different calcination temperatures and Ru-clusters decorated different carriers are explored in detail in Fig. S3. Upon carbonizing at 800 °C in Ar atmosphere (Fig. 1g), the resulting CoOx@NPC mainly exhibits the diffraction peaks belong to three Co species such as Co (JCPDS: 15–0806), CoO (JCPDS: 09–0402), and Co3O4 (JCPDS: 74–1657) [20,37]. After chemical deposition of Ru clusters, there are two additional diffraction peaks appeared at 38.6° and 42.4°, which are consistent with the characteristic peaks of hexagonal structure of metallic Ru (JCPDS: 01–1253) [38]. Moreover, X-ray diffraction (XRD) patterns of ZIF-8, ZIF-67 and core-shell ZIF-8@ZIF-67 are confirmed in Fig. S4a, and Raman spectra were adopted to investigate the effects of carbonization temperatures and support types on the carbon structure (Figs. S4b–c).

To further examine the microscopic features of Ru/CoOx@NPC composite, we performed a detailed TEM study. Most of the black clusters (probably Co or Ru) are evenly distributed throughout the composite and some of which are agglomerated to a bigger particle (Fig. 2a). The high-resolution TEM image reveals that there are two types of distinct intersecting lattice fringes with the lattice spacing of 0.18 nm and 0.20 nm, and they are corresponding to the (111) and (200)
planes of metallic Co (Fig. 2b) [39], respectively. Meanwhile, the lattice fringes with a spacing of 0.21 nm is ascribed to the (200) crystal plane of CoO [40], a lattice spacing of 0.34 nm is corresponding to the (002) crystal plane of graphitized carbon, and the other lattice spacing of 0.23 nm belongs to Ru (100) crystal plane [41]. Furthermore, the HAADF-STEM and corresponding elemental mappings indicate that the elements of Ru, Co, Zn, C, N and O are evenly distributed throughout the skeletal structure of Ru/CoOx@NPC composite (Fig. 2c). Notably, since the particle size of Ru is so small that we can hardly distinguish Ru particles. Notably, the much sparser dispersion of Ru pattern is consistent with the features of ultralow loading of Ru species in the composite.

The N2 adsorption/desorption isotherm at 77 K of Ru/CoOx@NPC composite was used to investigate the Brunauer-Emmett-Teller (BET) surface area and porous structure (Fig. 2d). The BET curve shows a typical H3 type isotherm with a BET surface area of ca. 325.0 m² g⁻¹ and a total pore volume of 0.206 cm³ g⁻¹. The isotherm shows a rapid increase at a lower relative pressure (P/P₀ < 0.02), indicating the presence of a mesoporous structure. Notably, there is a distinct hysteresis loop at relative pressures (P/P₀) of 0.5–0.9, which are mainly originated from the structural voids of the surface collapse of the composite [42]. Moreover, the porosity distribution of the composite is in the range of 0.73–2.7 nm from the Barrett-Joyner-Halenda (BJH) analysis showing the micropores and mesopores porous mixed features. The high porosity exposes more active sites, and facilitates the diffusion of solutes and the release of gases, therefore improves the catalytic performance.

XPS analysis

The compositions and chemical states of Ru/CoOx@NPC and CoOx@NPC were studied by X-ray photoelectron spectroscopy (XPS). As shown in Fig. 5a, the elements of C, N, O, and Co are detected in both samples by XPS survey spectra. The high-resolution XPS spectra of C 1s + Ru 3d regions (Fig. 3a) are deconvoluted into C=C (284.0 eV), C–C (284.8 eV) and C=O (286.1 eV) and used as a calibration standard [43,44]. Meanwhile, the Ru 3d₅/₂ core level from Ru clusters are deconvoluted at the binding energies of 281.0 eV (Ru⁰) and 283.2 eV (Unscreened final states) [45]. Fig. 3b shows the high-resolution Co 2p spectra of Ru/CoOx@NPC and CoOx@NPC, where the Co 2p₃/₂ region of Ru/CoOx@NPC is deconvoluted into three peaks at 778.5, 780.6 and 784.6 eV, corresponding to the metallic Co, Co²⁺ and satellite peaks, respectively. Compared with CoOx@NPC, the Co²⁺ species in Ru/CoOx@NPC undergoes a positive shift (0.93 eV), which is smaller than that of the binding energy differences of Co 2p₁/₂ of Co²⁺ and Co³⁺ (1.2 eV) [46], indicating a strong electronic interaction between Ru and Co species [47]. Notably, the peak ratios of Co²⁺/Co increased from 7.6 to 15.2 after the Ru loading on the CoOx@NPC surface, which could be due to the oxidation of the surface of CoOx@NPC. Moreover, the high-resolution O 1s spectra of the two samples are further analyzed (Fig. 3c). The resulting three type of signals at 529.5, 530.8 and 532.1 eV are ascribed to metal oxide, oxygen vacancies and adsorbed H₂O, respectively [48]. As shown in Fig. 3c, the oxygen vacancies ratio increase rapidly from 42.6% to 67.9% after Ru loading. Many studies have found that a higher proportion of oxygen vacancies creates a faster electron transfer, stronger adsorption characteristics and more active sites [49]. Furthermore, it...
should be pointed that the high-resolution N 1s spectra did not change much before and after loading of Ru clusters (Figs. S5b–c), further demonstrating that the loading process of Ru does not destroy the composition of the material [50].

Catalytic hydrolysis analysis

The catalytic H\textsubscript{2} production from NaBH\textsubscript{4} hydrolysis were performed in an alkalized NaBH\textsubscript{4} solution at 25 °C. The schematic illustration of the experimental setup is shown in Fig. S6. The amounts of the generated H\textsubscript{2} was calculated according to the volume of the water displaced by H\textsubscript{2}. The self-hydrolysis study of NaBH\textsubscript{4} was first carried out in 150 mM NaBH\textsubscript{4} + 0.4 wt% NaOH solution, and almost no hydrogen evolution was detected (Fig. S7). As shown in Fig. 4a, we explored the effect of the carbonization temperature of Ru/CoO\textsubscript{x}@NPC on catalytic performance. The higher annealing temperature changes the catalyst’s crystallinity, thereby improving catalytic performance; meanwhile, it also decreases the catalyst’s porosity. Therefore, the optimal point is expected. The results show that the optimized Ru/CoO\textsubscript{x}@NPC catalyst prepared by carbonized at 800 °C has the highest turnover frequency (TOF) of 1118.6 mol\textsubscript{H2} mol\textsubscript{Ru} \textsubscript{−1} min−1 among the rest (Fig. 4b). This is one of the highest reported value of Ru

![Graphs showing the catalytic hydrolysis analysis results.](image-url)
loaded powder catalysts for NaBH₄ hydrolysis (Table S4) to the best of our knowledge. In addition, we optimize the loading of Ru in terms of catalytic performance. The results show that as the contents of Ru increases, the catalytic hydrogen generation increases rapidly at the beginning and then slows down when it close to the maximum point around 3.0 wt% (Fig. 4c). The catalyst has the largest TOF value when the Ru loading is 2.73 wt% (Fig. 4d). The results revealed that the Ru/CoOₓ@NPC prepared by the precursor with Co/Zn ratio of 3/4 shows the best catalytic performance (Fig. S8). The equivalent H₂ per mole of NaBH₄ was used in the vertical axis to signify the changes in conversion (Figs. S9a–b). Therefore, the Ru loading in the Ru/CoOₓ@NPC catalyst discussed below is 2.73 wt%, and CoOₓ@NPC is prepared by carbonization at 800 °C atmosphere.

To evaluate the effect of different supports on the catalytic performance, we investigated the catalytic performance on various supports with the same loading of Ru (2.73 wt%). As shown in Fig. 5a and Fig. S9c, the catalytic activity of Ru loaded CoOₓ@NPC was found to be substantially higher than that of CoOₓ@NPC as well as all other control catalysts. Fig. 5b shows that the HGR values of Ru/CoOₓ@NPC is 8019.5 mL min⁻¹ g⁻¹ (total mass of catalyst), which is 1.44–, 4.57–, 716.0– and 47.53-fold higher than that of Ru/CoOₓ@NC-67, Ru/CB, Ru/NPC-8 and NPC-67 respectively, while also superior to most of the previously reported catalysts (Table S4). In particular, the metal ICP-AES test results show that the content of Zn in the target catalyst is very low, and the actual content is between 1% and 3%. In combination with Fig. 5a, the catalytic performance of Ru/NPC-8 is very weak, indicating that Zn has little effect on the performance of catalyzing hydrogen evolution as an impurity. To measure the activation energies of Ru/CoOₓ@NPC and Ru/CoOₓ@NC-67, a set of experiments were conducted at different temperatures. As shown in Fig. 5c and Fig. S9d, the rate of HGR values increase rapidly with increasing the reaction temperatures from 298 K to 318 K, and the rate constant k is calculated from the slope of each experiment. The activation energy of Ru/CoOₓ@NPC catalyst was estimated to be 54.2 kJ mol⁻¹ by the Arrhenius plot (ln k vs 1/T), which is lower than that of Ru/CoOₓ@NPC (59.3 kJ mol⁻¹) (Fig. 5d and Fig. S10), implying a kinetically enhanced catalytic activity towards NaBH₄ hydrolysis [51].

Durability tests are used to evaluate the reusability of Ru/CoOₓ@NPC catalyst in an alkalized NaBH₄ solution (Fig. 6a). The results show that the Ru/CoOₓ@NPC catalyst exhibits excellent reusability for catalytic hydrogen generation. After the fifth cycle, it retained ca. 73.9% of initial activity (Fig. 6b). The slight decay of catalytic activity could be attributed to the exfoliation of Ru species (the mass fraction of Ru species is reduced from 2.73% to 2.10% by ICP-AES after five recycles, Table S3), structural damage (Fig. S11) and catalyst poisoning by BO₂⁻ species [28,52].

As discussed above, the Ru/NPC@CoOₓ catalyst has the largest HGR and TOF values as compare to other catalysts. The outstanding performance mainly attributed to a large specific surface area, high conductivity, and synergy between Co and Ru species. According to the XPS study, the positive shift of the Co 2p binding energy in Ru/CoOₓ@NPC caused by the partial electron transfer from Co species to Ru species indicates a higher electron density on Co species as compared to that of Ru species. Accordingly, the partially negatively charged hydrogen atoms preferred to attach to the Ru atoms. As a result, the BH₄⁻ dissociates at the Co and Ru metal sites, on which hydrogen atoms are adsorbed on Ru and BH₃ is

Fig. 5 — (a) Stoichiometric H₂ evolution and (b) the summarized TOF values of different catalysts (2.73 wt% Ru) in 150 mM NaBH₄ + 0.4 wt% NaOH solution at 25 °C. (c) Stoichiometric H₂ evolution of Ru/CoOₓ@NPC in 150 mM NaBH₄ + 0.4 wt% NaOH solution at different reaction temperatures, and (d) the summarized Arrhenius plots from c.

attached to Co species. After the B–H bond is broken, the negatively charged B species immediately transfers the negative charge to the adsorbed H atoms through the conductive bulk. Finally, the negatively charged H atom on the Ru surface extracts hydrogen from water to release an H2 molecule, while the OH− ion attacks the BH3 to form a BH3OH molecule, followed by transferring one hydrogen atom of the BH3OH to a free Ru site. After the first cycle, the surface of the catalyst releases a hydrogen molecule and a BH3OH species. As the reaction proceeds, all of the H atoms in the borohydride are replaced by OH− ions (Fig. 6c), ultimately releasing the B(OH)4− species [53].

Conclusion

In summary, core-shell ZIF-8@ZIF-67 crystals, which integrate the properties of single ZIF-8 and ZIF-67, are elaborately designed and fabricated using a seed-mediated growth technique. Upon the direct carbonization of core-shell ZIF-8@ZIF-67 crystals, a novel CoOx@NPC supports are generated. The functionalized support inherent the high surface area (up to 325.0 m² g⁻¹) derived from core ZIF-8 and superior graphitic structure originated from shell ZIF-67. Finally, the low-loading Ru decorated CoOx@NPC was prepared through chemical reduction. The carbonization temperatures, types of supports, and loading contents of Ru clusters were studied in detail. The optimal performance on NaBH4 hydrolysis was achieved under the condition where the pyrolysis temperature is 800 °C, and the Ru loading is 2.37 wt%. The highest TOF value of Ru/CoOx@NPC catalyst is 1118.6 min⁻¹ at 25 °C, far better than most previously reported results. Besides, the Ru/CoOx@NPC catalyst still retains more than 70% catalytic activity after five cycles. This work provides new insight into designing and preparing a highly active catalyst for NaBH4 hydrolysis.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (no. 21965005), Natural Science Foundation of Guangxi Province (2018GXNSFAA294077, 2018GXNSFAA281220), Project of High-Level Talents of Guangxi (F-KA18015, 2018ZD004) and Guangxi Technology Base and Talent Subject (GUIKE AD18126001).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijhydene.2020.12.011.
REFERENCES

