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ARTICLE INFO ABSTRACT
Keywords: The development of efficient and long-lasting catalysts for hydrogen generation is vital for advancing innovations
C°2B'M?BZ/ CMO in clean energy technologies. In this study, we synthesized and characterized Co,B-MoB,/CMO, a crystalline/
Crystalline/amorphous amorphous heterointerface catalyst, for sodium borohydride (NaBH4) hydrolysis, achieving a high hydrogen
Heterointerface 11

generation rate of 7364.3 mL min! g”! at 298 K. The activation energy of 44.4 kJ mol™! was lower than that of
most reported catalyst. Both experimental and theoretical analyses demonstrate that Co defects and the inter-
facial regions between crystalline and amorphous phases in Co;B-MoB2/CMO are essential in integrating critical
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factors, such as a high concentration of unsaturated coordination sites. These features not only alter the surface
electronic properties but also enhance the adsorption of H,O molecules and promote the dissociation of the BH,
thereby optimizing catalytic performance. In addition, the NaBH4 hydrolysis hydrogen production system based
on this catalyst successfully drove a hydrogen-air fuel cell and lit up a small light bulb, demonstrating its po-

tential in practical applications.

1. Introduction

Hydrogen (Hy) is widely regarded as a green energy carrier, but its
utilization through most existing production technologies requires
storage, which involves compression and shipping [1,2]. Hydrogen is
typically transported either as a compressed gas (20-70 MPa) or as a
cryogenic liquid at 20 K, both of which present significant challenges in
terms of cost and safety. Therefore, direct hydrogen production at
refueling stations or chemical plants could offer a more viable solution
for future hydrogen applications [3]. Sodium borohydride (NaBH4)
hydrolysis presents a promising alternative, as it eliminates the need for
complex storage infrastructure and enables on-demand hydrogen pro-
duction, effectively addressing many of the issues associated with
hydrogen storage and transportation. This makes NaBHy4 an attractive
option for portable applications [4]. For instance, Hsueh et al. [5] pre-
pared a solid mixture comprising NaBHa, Co?*/IR-120, and silicone
rubber that generated hydrogen at a rate of 25 mL/min for two hours,
successfully powering a 2 W proton exchange membrane fuel cell
(PEMFC) without requiring external heating. Similarly, Li et al. [6]
created a system using cobalt oxide and nickel foam that produced
hydrogen at 30 SLPM to power a 3 kW PEMFC. However, the slow
hydrogen production rate from the direct reaction of NaBH4 with water
typically requires the addition of transition metal catalysts or acids to
enhance the hydrolysis process [7,8].

Various catalytic systems, including noble metals (e.g., Rh [9], Ru
[10]1 Pt [11] and Pd [12] and non-noble metals (e.g., Fe, Co, Ni, and Cu),
have been explored for hydrogen production. Although noble metal
nano-catalysts demonstrate excellent catalytic activity, their high cost
and limited supply present considerable obstacles for widespread in-
dustrial use [13]. Consequently, recent efforts have focused on devel-
oping noble-metal-free catalysts with noble-like activity for hydrogen
evolution from sodium borohydride. These include earth-abundant
transition metal oxides [14], alloys [15,16], boride [17], nitrides [18],
and phosphides [19]. Among these, transition metal borides have shown
great potential as catalysts for sodium borohydride hydrolysis due to
their excellent electrical conductivity, high intrinsic catalytic activity,
and accessibility. Elemental boron, the smallest metal-like element,
possesses unique physicochemical properties, such as a small atomic
radius and high electronegativity, making it prone to forming covalent
compounds with metallic characteristics [20]. However, previous
research has demonstrated that unsupported boride nanoparticle cata-
lysts are prone to aggregation due to their high surface energy and
magnetic interactions. This aggregation can hinder the hydrogen pro-
duction rate and shorten the catalyst’s lifespan [21]. One effective
strategy to address this aggregation issue is using a high-surface-area
growth substrate to enhance the dispersion of CoB particles [22].
CoMoO4 is widely employed as a catalyst substrate, effectively pre-
venting particle aggregation and improving catalytic activity [23].
Notably, incorporating Mo into Co-based catalysts provides distinct
advantages in modulating catalytic performance. The exceptional redox
ability of Co, combined with the high conductivity of Mo, enables syn-
ergistic effects that enhance catalytic efficiency [24].

Among recent advancements, phase engineering of crystalline/
amorphous heterostructured nanomaterials has proven to be a practical
approach for enhancing catalytic properties [25]. For example, Liang
et al. developed a NiB/NiFe204 catalyst with a crystalline/amorphous
heterojunction structure for sodium borohydride hydrolysis, signifi-
cantly improving hydrogen production efficiency, with a reported

hydrogen evolution rate of 299.88 mL min~! g™ [26]. The enhanced
performance can be attributed to the cooperative effects arising from the
coexistence of crystalline and amorphous domains. The amorphous
phase contributes additional active sites and enhances charge transfer,
while the crystalline phase maintains structural stability and supports
efficient electron transport [27]. Defect engineering has become a
promising approach to enhance catalytic performance by altering the
electronic structure of catalysts [28]. For instance, Shang et al. reported
a CozB-Mo0O3/MOF heterojunction catalyst with cobalt defects that
exhibited remarkable performance in NaBH,4 hydrolysis. The introduc-
tion of cobalt defects increased the number of active sites and optimized
the electronic structure around these sites, facilitating the adsorption
and activation of BH, and H,0 molecules [29]. The presence of cobalt
defects thus provides a flexible platform for tuning the electronic
structure and enhancing catalytic efficiency in hydrogen generation
from NaBH4 hydrolysis.

Building on these insights, we have successfully synthesized crys-
talline/amorphous CozB-MoBy/CMO heterointerface catalysts enriched
with cobalt defects using a chemical co-precipitation method followed
by sodium borohydride reduction treatment. During boronization,
boron atoms are incorporated into the CoMoOg matrix, forming an
amorphous layer around the free-standing, interconnected nanorods. A
thorough range of characterization methods has been utilized to
examine the crystallinity, microstructure, porosity, and chemical states
of the different components. Based on the Michaelis-Menten model, we
propose a catalytic mechanism for NaBH4 hydrolysis using the CozB-
MoB,/CMO system. As expected, CopB and MoB; in CoyB-MoB,/CMO
effectively activate BH; and HO, respectively, facilitating the hydro-
lysis process. The optimized CozB-MoBy/CMO catalyst demonstrates
remarkable activity in alkaline sodium borohydride solutions, under-
scoring its potential for use in energy storage and conversion
applications.

2. Experimental section
2.1. Materials

Cobalt chloride hexahydrate (CoCly-6 H2O, 99.0 %, Aladdin), so-
dium molybdate dihydrate (NagMo0O4-2 H20, 99 %, Xilong Scientific),
acetone (CH3COCHg, 99.5 %, Xilong Scientific), sodium chloride (NaCl,
99.5 %, Xilong Scientific), sodium hydroxide (NaOH, 96 %, Aladdin),
urea (HoNCONH;, 99.0 %, Xilong Scientific), sodium borohydride
(NaBH4, 98.0 %, Sinopharm Group), ethanol (99.7 %, Xilong Scientific).
The study utilized commercially available analytical-grade reagents and
solvents, which were used directly without further purification. The
deionized water (18.2 MQ c¢cm™!) from a UPTA-20 water purification
system (China Shanghai Lichen Bangxi Instrument Technology Co., Ltd.)
was used throughout the experiment. All chemical reagents were ob-
tained commercially in analytical purity and utilized directly without
further processing.

2.2. Synthesis of CoM00g-0.9 H,0 (CMO) nanorods

The CoM00g:0.9 Hy0 (CMO) nanorods were prepared using a water
bath process reported in the previous work with slight modification
[30]. Typically, 5 mmol CoCly-6 HoO and NasMoOj4-2 HoO were dis-
solved in 30 mL H5O. Then, the Na,MoQ4-2 H,O solution was added
dropwise to the CoCly-6 H20 solution and stirred at 70 °C for 2 h. The
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Fig. 1. (a) XRD pattern of CoM0O¢-0.9 H;O (CMO). (b) XRD pattern of Co,B-MoB,/CMO. (c) Bubble contact angle images of different catalysts. (d) N adsorp-
tion—desorption isotherm with the inset showing the corresponding pore size distribution of Co;B-MoB,/CMO and Co;B-Co3(BOs),. (e) EPR spectra of the catalysts.

(f) Raman spectra of Co,B-MoB,/CMO, Co,B-Co3(BO3), and CMO.

synthesized solid was subjected to extensive purification through
sequential washing with large volumes of deionized water and anhy-
drous ethanol. Subsequently, the purified product was oven-dried at 60
°C for 12 h to remove residual solvents.

2.3. Synthesis of CMO-Co®*

30 mg of CMO and 120 mg of CoCly-6 HoO were ultrasonically
dispersed into 10 mL of acetone. The reaction system was continuously
agitated using a magnetic stirrer at room temperature until visual
confirmation of complete solvent removal was achieved. The resulting
solid residue was then carefully harvested using a spatula and stored in a
desiccator for subsequent characterization. To compare the performance
of different Co?* doping levels, the CMO/CoCly-6 HyO mass ratio was
varied (1:1, 1:4, 1:8, 4:1) during the synthesis process.

2.4. Synthesis of Co2B-MoBy/CMO

The 50 mg CMO-Co®* were ground with 1 g NaCl and 1 g urea, the
resulting powder was subsequently transferred to a glass container and
subjected to thermal treatment at 60 °C for 4 h. The dried precursor was
mixed with different amounts (0.1 g, 0.2 g and 0.3 g) of NaBHy, stirred
uniformly with a weighing spoon, and left to ensure a complete solid-
state reaction. The synthesized product was isolated through centrifu-
gal separation, followed by sequential purification using distilled water
and anhydrous ethanol. Final drying was performed under vacuum
conditions at 70 °C for a duration of 12 h. The Co,B-Co3(BO3), material
without CMO was also prepared.

Material characterizations and catalytic hydrolysis of NaBH4 mea-
surements are described explicitly in Supporting Information.

3. Results and discussion
3.1. Synthesis and characterization

The X-ray diffraction (XRD) pattern of CoMoOg-0.9 HoO (CMO)

(Fig. 1a) confirms its successful synthesis, exhibiting well-defined crys-
talline peaks indexed to JCPDS: 14-0086. In Fig. 1b, the XRD pattern of
CosB-MoB,/CMO, a crystalline/amorphous heterointerface catalyst,
presents broad peaks at 20 ~ 34.0° and 45.4°, corresponding to MoB;
(JCPDS: 06-0682) and CoyB (JCPDS: 25-0241), respectively. The
broadness of these peaks suggests poor crystallinity, likely due to the
intense reduction process employed during synthesis [31]. The XRD
spectra of CosB-Co3(BO3)s and CoyB-MoB; align with the known pat-
terns of CooB (JCPDS: 25-0241), Co3(BO3), (JCPDS: 25-0102), and
MoB; (JCPDS: 06-0682) (Fig. Sla-b). As illustrated in Fig. 1c, CosB--
MoB,/CMO exhibits a contact angle of 51.4°, which is significantly
lower than that of CosB-Co3(BO3)2 (64.6°) and CooB-MoB, (58.0°).
These results indicate that Mo-doped CoB-MoB,/CMO and CozB-MoB,
exhibit greater hydrophilicity than CozB-Co3(BOs3)2 [32]. The enhanced
hydrophilicity of CoyB-MoB,/CMO is expected to facilitate the efficient
transport of BH; and H,0, promoting their activation and accelerating
the hydrolytic dehydrogenation of NaBH4 [33]. The porosity variations
between CosB-MoB,/CMO and CoyB-Co3(BO3), were analyzed using No
adsorption-desorption isotherms. The Brunauer-Emmett-Teller (BET)
analysis revealed specific surface areas of 43.6 and 45.8 m? g~! for the
respective samples (Fig. 1d). The isotherms of both materials exhibit
type-IV behavior with an H3 hysteresis loop, while the measured pore
sizes were 20.6 nm and 18.2 nm (inset in Fig. 1d), confirming the for-
mation of mesoporous structures [34,35]. These mesopores and ample
surface area provide enhanced pathways for electron transfer and mass
diffusion, which are crucial for catalytic activity [36]. Electron para-
magnetic resonance (EPR) spectroscopy further investigated defect
properties. As shown in Fig. le, pure CMO shows no detectable EPR
signal, whereas Co;B-MoB5/CMO and Co3B-Co3(BO3), exhibit distinct
signals at g =2.15 indicating the presence of Co defects. For
semi-quantitative analysis of Co defect concentration, double integra-
tion (DIN) of the EPR signals was performed: the DIN intensity of
CoyB-MoB,/CMO was normalized to 1.00, compared to 0.65 for
CoyB-Co3(B03), and near-negligible intensity for pure CMO. This con-
firms CoyB-MoBy/CMO has the highest unpaired electron concentration
and thus the richest Co defects [37,38]. These defects facilitate the
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Fig. 2. (a) Schematic illustration of the synthesis process. SEM images of (b) CMO, (c) CMO-Co?", and (d) Co,B-MoB,/CMO. (e) TEM and (f) HR-TEM of Co,B-MoB,/
CMO. (g) HAADF-TEM images and the corresponding elemental mappings of Co,B-MoB,/CMO (Co, Mo and B).

dispersion and anchoring of metal nanoparticles (NPs) while modifying
the electronic structure of CosB-MoB,/CMO. The resulting electron-rich
surface state is expected to enhance catalytic performance. The micro-
structures of the materials were further characterized using Raman
spectroscopy. As depicted in Fig. 1f, the characteristic peaks at 334, 358,
852, and 933 cm ™! are assigned to Co-O-Mo, O-Mo-O, and Mo-O-Co
bonding in CMO, confirming its successful synthesis [39,40]. The

Raman spectra of CosB-MoB;/CMO and CosB-Co3(B0O3)2 display five
peaks at 665, 608, 506, 466, and 188 em . These characteristic peaks
can be assigned to the fundamental Raman-active phonon modes (A;g,
Fog, Faq, Eg and Faq, respectively) that are diagnostic of cobalt oxide
phases [41]. Upon exposure to air, metal borides naturally oxidize.
Consequently, the Raman spectra of CoyB-MoBy/CMO and CosB--
Co3(BO3)y primarily reflect peaks corresponding to their oxidized
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Fig. 3. High-resolution XPS spectra of (a) Co 2p, (b) Mo 3d, and (c) B 1 s for Co,B-MoB,/CMO and Co,B-Co3(BO3),. (d) Work functions of the different catalysts.
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Fig. 4. (a) The temporal evolution of hydrogen production rates was systematically compared across various catalytic systems and (b) the corresponding HGR values.
(c) Stoichiometric hydrogen evolution from 150 mM NaBH,4 + 0.4 wt% NaOH solution by Co,B-MoB,/CMO catalysts with varying ratios of CMO to Co at 25 °C and
(d) the corresponding HGR values. (e) Co,B-MoB,/CMO prepared with different NaBH,4 dosages and (f) the corresponding HGR values. All catalytic evaluations were

conducted in 150 mM NaBH,4 + 0.4 wt% NaOH solution at 25 °C.

species [42].

The target catalyst was synthesized using a chemical co-precipitation
method followed by NaBH4; reduction (Fig. 2a). Initially,
CoMo00g4:0.9 HO (CMO) nanorods were prepared via the co-
precipitation method. A specific amount of CMO nanorods was then
immersed in an acetone solution containing varying concentrations of
CoCly-6 Hy0 to ensure uniform dispersion of CoCly-6 HoO on the CMO
nanorod surface. Subsequently, the resulting precursors were mixed
with NaCl and urea, and the crystalline/amorphous CozB-MoB,/CMO
heterointerface catalysts were synthesized via solid-phase reduction
using sodium borohydride. Herein, NaCl and urea respectively under-
take critical regulatory roles: NaCl effectively suppresses the agglom-
eration of CoyB-MoB,/CMO nanoparticles by virtue of its high ionic
strength, while urea slows down the reduction kinetic rate of NaBH4 [43,
44]. This synergistic regulation of dispersion and reaction kinetics
provides favorable conditions for the construction of crystal-
line/amorphous heterointerfaces. The morphological and surface
properties of the synthesized materials were characterized using scan-
ning electron microscopy (SEM). The SEM images reveal that the CMO
nanorods possess a smooth and clean surface (Fig. 2b). As shown in
Fig. 2c, large quantity of cobalt salts are firmly attached to the surface of
the CMO nanorods. Following the sodium borohydride reduction reac-
tion, the rod-like structure of the precursor is preserved, while numerous
small-sized nanoparticles appear on the surface (Fig. 2d). Fig. S2a-b
further illustrates that CosB-Co3(BO3)2 and CosB-MoB, also contain a
significant number of small-sized nanoparticles. Transmission electron
microscopy (TEM) images (Fig. 2e) confirm that the nanorod structure
of CoyB-Co3(BO3); remains intact after the reduction process. Addi-
tionally, high-resolution TEM (HR-TEM) images (Fig. 2f) display
well-defined lattice fringes of 0.182 nm and 0.200 nm, corresponding to
CozB (112) and MoB; (101) planes, respectively. Furthermore, a clear
interface between the crystalline and amorphous phases is observed
(Fig. 2c). The close integration of these three components forms a
multi-hierarchical tandem structure, which plays a crucial role in opti-
mizing the synergistic effects among them [45]. Elemental mapping
obtained from X-ray energy-dispersive spectroscopy (EDS) (Fig. 2g)

confirms the uniform distribution of Co, Mo, and B atoms throughout the
CoB-MoB,/CMO catalyst.

X-ray photoelectron spectroscopy (XPS) was employed to charac-
terize the oxidation states and spatial distribution of constituent ele-
ments in the catalytic material. The full-range spectrum (Fig. S3a)
demonstrates the coexistence of Co, Mo, O, and B in the Co;B-MoBy/
CMO composite. High-resolution XPS spectra of the C 1 s region were
analyzed using reference peaks for C—C (284.8 eV), C—0O (286.0 eV),
and C=0 (288.9 eV) (Fig. S3b-c) [46,47]. The high-resolution Co 2p
spectrum of CosB-MoB,/CMO (Fig. 3a) exhibits four distinct peaks
corresponding to Co—B (778.6 €V), Co®' (780.9 eV), Co®" (782.5 eV),
and a satellite peak (786.0 eV) [48]. This surface oxide formation agrees
well with the vibrational modes observed in Raman analysis. Notably,
the Co®*/Co®" area ratio in CosB-MoBy/CMO is 1.32, significantly
higher than that in CosB-Co3(BO3)2 (1.03), suggesting a higher con-
centration of Co defects in CosB-MoBy/CMO [49]. The Mo 3d XPS
spectrum (Fig. 3b) displays two characteristic doublet peaks at binding
energies of 232.33 eV (3ds/2) and 235.45 eV (3d3/2), which are diag-
nostic of Mo® species in the material [50]. Additionally, two peaks at
230.43 eV and 233.65eV, with an energy separation of 3.22eV,
correspond to Mo**ions [51]. TheB1's spectra of CoaB-MoB,/CMO and
CoyB-Co3(B03)2 were deconvoluted into two peaks, corresponding to
M-B and B—O bonds, confirming the formation of M—B alloys (Fig. 3c)
[52]. The Co-B peak in CosB-MoBy/CMO exhibits a negative shift of
0.16 eV compared to CoB-Co3(BOs3)2, suggesting that the increased Co
defects enhance electronic interactions between CoyB and MoB,. This
synergistic effect lowers the activation energy of the reaction, signifi-
cantly enhancing the catalytic efficiency [44]. To further investigate the
space charge transfer mechanism, ultraviolet photoelectron spectros-
copy (UPS) was employed [53]. The work function (WF) difference,
derived from UPS data (Fig. S4), determines the direction and feasibility
of electron transfer [54]. The calculated work function for CoyB--
MoB,/CMO is 6.75 eV, lower than that of CozB-MoB; (7.00 eV). This
decrease facilitates more efficient electron migration from bulk to sur-
face regions, thereby promoting interfacial charge transfer with reactant
species. This enhanced electron exchange with reactants improves the
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catalyst’s dynamic performance, further facilitated by the introduction
of the CMO carrier [55].

3.2. Performance of catalyst for NaBH4 hydrolysis

The catalytic hydrolysis performance of NaBH4 was analyzed via the
drained approach, with details provided in Fig. S5. Previous studies
indicate that NaBH4 undergoes weak self-decomposition in aqueous
solution (Fig. S6a). Given that NaBH4 maintains stability in alkaline
solutions (Fig. S6b), its reaction with catalysts allows controlled Hy
release. The catalytic performance was quantified by evaluating the
hydrogen production rates of different catalysts. As shown in Fig. 4a-b,
the hydrogen generation rates followed this order: CoyB-MoBy/CMO
> CozB-MoB, > COzB-C03(BO3)2 > CMO. Co2B-MoBy/CMO out-
performed all other catalysts in terms of hydrolysis kinetics, displaying a
superior hydrogen evolution rate of 7364.3 mL min™' g'. The results
suggest that Mo species function as promoters, playing a crucial role in
enhancing the catalytic activity of NaBHy4 hydrolysis [12]. The influence
of the CMO-to-Co®" mass ratio on catalytic performance was systemat-
ically examined to identify the optimal preparation conditions. The best
performance was observed at a CMO/Co?*" ratio of 1:4 (Fig. 4c-d). This
corresponds to the EPR results, where the 1:4 ratio shows the strongest
signal at g = 2.15, verifying that more Co defects correlate with superior
catalytic performance. The metal content in the catalysts was deter-
mined via ICP-MS (Table S1). As a function of cobalt loading, the
hydrogen production rate exhibited a volcano-like trend. The superior
catalytic activity of CoaB-MoBy/CMO is primarily attributed to abun-
dant defect sites and strong synergistic interactions between the crys-
talline and amorphous phases [56]. As shown in Fig. 4e-f, catalyst
activity was also influenced by the amount of NaBH4 used. When
200 mg of NaBH,4 was used, complete dehydrogenation occurred within
5.6 min at 298 K. However, when the NaBH, amount increased to
300 mg, the catalytic activity of CooB-MoBy/CMO decreased, likely due
to partial structural degradation of the catalyst framework [57]. The
influence of catalyst dosage on NaBH, dehydrogenation kinetics was
systematically investigated by varying the amount of Co;B-MoBy/CMO.

Optimal catalytic performance was achieved with 10 mg of Co;B--
MoB,/CMO, which showed superior hydrogen evolution activity while
maintaining economic viability (Fig. S7a-b).

NaOH, as a promoter, plays a crucial role in influencing the dehy-
drogenation activity of NaBH,. The hydrolysis rate of Co;B-MoBy/CMO
was examined at varying NaOH concentrations to investigate its effect
on catalytic performance. As shown in Fig. 5a, the hydrogen generation
rate follows a volcano-like trend as NaOH concentration increases from
0 to 3.2 wt%. This suggests that an optimal NaOH concentration en-
hances NaBH4 hydrolysis by providing OH™ ions, which subsequently
facilitate reactant adsorption and activation, leading to accelerated re-
action rates. However, excessively high NaOH concentration signifi-
cantly increases the reaction solution’s viscosity and alkalinity, and the
elevated viscosity inhibits reactant mass transfer. Zeta potential mea-
surements further support this observation, exhibiting a trend similar to
the volcano plot with increasing NaOH concentration (Fig. 5b). This
confirms that NaOH concentration plays a key role in optimizing cata-
lytic performance. To assess the effect of NaBH,4 concentration, experi-
ments were conducted by increasing NaBH4 concentration from 100 to
250 mM. The results indicate that the hydrogen generation rate remains
unchanged, demonstrating zero-order kinetics to NaBH4 concentration
(Fig. S8) [58]. To evaluate the influence of reaction temperature on
catalyst performance, kinetic studies were performed within the range
of 298-318 K. As shown in Fig. 5c, the hydrogen generation rate of
CoyB-MoB,/CMO increases significantly with temperature. The activa-
tion energy for NaBH,4 hydrolysis catalyzed by CozB-MoB2/CMO was
determined to be 44.4 kJ mol~! from the Arrhenius plot (Fig. 5d). This
value is lower than that of CoyB-Co3(BO3)y (45.5 kJ mol™ 1) and com-
pares favorably with most reported values in the literature (Table S2).
This lower activation energy indicates a significant improvement in
reaction kinetics, primarily due to abundant defects, which effectively
reduce reaction energy barriers and enhance catalytic performance [59].
Reusability is a critical factor for practical catalyst applications. Dura-
bility tests of CozB-MoB;/CMO were conducted at 25 °C over five
consecutive cycles. As shown in Fig. Se-f, the Hy generation rate expe-
riences only a slight decline. This is primarily attributable to the
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Fig. 6. (a) Proposed catalytic mechanism of the Co,B-MoB,/CMO catalyst for hydrogen generation via alkaline NaBH, hydrolysis. (b-c) Model of a fuel cell small

light equipped with NaBH,4 and the Co,B-MoB,/CMO catalyst.

adsorption of the borate ions generated during the reaction onto the
catalyst surface, resulting in the partial coverage of active sites [60].
Post-cycle SEM, XRD and XPS (Fig. S9 and Fig. S10) characterizations of
Co2B-MoB3/CMO confirm that its composition and crystal structure re-
mains stable, further emphasizing its high stability and potential for
long-term application.

3.3. Catalytic mechanism analysis

Fig. 6a illustrates a plausible Michaelis-Menten mechanism [61,62]
for NaBH4 hydrolysis catalyzed by Co;B-MoB,/CMO. Initially, BH; is
adsorbed onto the surface of CoyB. Due to the electronegativity differ-
ence, the hydridic hydrogen in the B—H bond of BH; dissociates into
H™ and BHj. The generated H™ on the CosB surface then rapidly reacts
with a proton (H") from H,0, forming Hy molecules. Simultaneously,
the remaining -OH combines with BH3, generating the intermediate
BH3OH ™. As the reaction progresses, H atoms from BH3OH ™ continue to
adsorb onto CoyB. Eventually, the remaining hydrogen atoms in the
borohydride species are substituted by OH" ions, ultimately forming
B(OH),. In this study, we elucidated the potential mechanism of
CozB-MoB,/CMO-catalyzed NaBH,4 hydrolysis and successfully demon-
strated an innovative experiment in which the hydrogen gas produced
from this reaction powered a fuel cell. The experiment in which NaBH4
is hydrolyzed to produce hydrogen and light a small lamp, as shown in
Fig. 6b-c, visually demonstrates the key role of high-performance cata-
lysts in hydrogen energy applications. The success of this experiment
provides a strong scientific basis and application demonstration for the
development of high-performance catalysts to promote hydrogen energy
technology towards practical application.

4. Conclusions

In summary, we have successfully prepared the CozB-MoBy/CMO
catalyst using a chemical co-precipitation method and NaBH, reduction
treatment. Benefitting from the structural and compositional merits, the
synthesized CoyB-MoBy/CMO samples exhibit excellent sodium boro-
hydride hydrolysis performance with hydrogen production rates as high
as 7364.3 mL min~! g™}, which exceeds most reported catalysts. Exper-
iments and characterization analyses indicate that the superior catalytic
performance of this material is mainly attributed to two factors: first, the
rapid ion conduction and electron-proton transport efficiency at the
interface between its crystalline and amorphous states; second, the
introduction of cobalt defects, which improves the electronic structure

and accelerates ion transfer speed. In addition, this study not only
revealed the potential mechanism of CoyB-MoBy/CMO catalysts to
promote the hydrolysis of NaBH4, but also successfully used the gener-
ated hydrogen for fuel cells, thus verifying the effectiveness of NaBH, as
a hydrogen storage medium and its potential for energy conversion
applications.
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